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Zusammenfassung

Die vorliegende Arbeit entstand im Rahmen einer Stelle als studentische Hilfskraft am
Quantitative Products Laboratory, einem Forschungsinstitut der Humboldt- und der
Technischen Univerität Berlin gefördert durch die Deutsche Bank AG.
Es wird der Fall eines Großinvestors betrachtet, der innerhalb eines vorgegebenen Zeit-
horizonts [0, T ] eine Aktienposition erwerben (oder analog verkaufen) möchte, die einen
signifikanten Anteil des täglichen Handelsvolumens des betrachteten Titels darstellt.
Im Vergleich zu einem Kleinanleger werden dabei jedoch Liquiditätskosten fällig. Deren
Modellierung beeinflusst maßgeblich die schließlich gesuchte kostenminimale Kaufstra-
tegie des Großinvestors.
Unser Modell ist dabei inspiriert durch die Arbeit von Obizhaeva und Wang [20]. Es
basiert auf einem elektronischen Handelssystem wie Xetra, in dem Limit- und Markt-
orders gestellt werden können. Bei einer Kauf- bzw. Verkaufslimitorder gibt der je-
weilige Marktteilnehmer die Anzahl von Aktien sowie den maximalen bzw. minimalen
Preis pro Aktie an, den er zu zahlen bzw. zu akzeptieren bereit ist. Diese Limitorders
werden dann im sogenannten Limitorderbuch (LOB) gesammelt und können durch
Stellen einer unlimitierten Marktorder von anderen Marktteilnehmern benutzt wer-
den. In unserem Modell vereinfachen wir das LOB indem wir davon ausgehen, dass
es eine Blockform aufweist. D.h. zu jedem Angebots- und Nachfragepreis gibt es eine
konstante Anzahl von Aktien. Stellt der Großinvestor nun eine Kaufmarktorder mit
einer größeren Aktienanzahl als die Höhe des Blocks, so erhöht dies den besten Nach-
fragepreis im LOB. Durch die Blockform ist dieser Preiseinfluss linear in der Anzahl
der Aktien der Marktorder. Ein Teil des Einfluss ist permanenter Natur; der restliche
temporäre Preiseinfluss nimmt nach und nach ab, wobei dieses Abklingen exponentiell
modelliert wird.

Es stellt sich die Frage, wie der Großinvestor seine Aktienposition über den betrach-
teten Zeithorizont in Marktorders stückelt, um den Erwartungswert der ihm entste-
henden Kosten zu minimieren. Durch dynamische Programmierung ergibt sich dabei
als optimale Kaufstrategie, zwei gleich große diskrete Trades in den Zeitpunkten 0 und
T zu tätigen und die verbleibende Position gleichmäßig über (0, T ) zu verteilen. Wir
weisen nach, dass diese Strategie zeitkonsistent ist. Das Charakteristische an ihr ist
die Tatsache, dass der temporäre Einfluss auf einem konstanten Level gehalten wird.
Diese Resultate werden sowohl für diskrete als auch stetige Marktmodelle dargestellt.
Berücksichtigt man bei der Optimierung zusätzlich auch die Varianz der Kosten durch
Einführung eines Risikoaversionskoeffizientens, wird bei der optimalen Strategie der
Handel zeitlich nach vorne verlagert. Wie bereits angedeutet sind diese Ergebnisse
weitestgehend der Arbeit von Obizhaeva und Wang [20] entnommen und werden in
verbesserter Art und Weise dargestellt.

Auf dieser Basis werden dann verschiedene Erweiterungsmöglichkeiten und Verfeine-
rungen des Modells von uns diskutiert: So führen wir zum Beispiel einen zusätzlichen
linearen temporären Preiseinfluss ein, der lediglich instantan wirkt und in dieser Form
in der Arbeit von Almgren und Chriss [2] zu finden ist. Die sich ergebende optimale
Kaufstrategie hat dann einen U-förmigen Verlauf. Des Weiteren ersetzen wir konstante



Modellparameter wie die Blockhöhe durch ihre deterministischen Tagesverläufe.

Außerdem wird untersucht, wie sich sogenannte Auktionen in das Modell einbetten
lassen. Dies wird relevant, sobald unser Zeithorizont mehrere Handelstage berührt.
Dabei verstehen wir hier unter einer Auktion den an vielen Börsenplätzen zu finden-
den Mechanismus zur Feststellung eines Eröffnungs- bzw. Schlusskurses. Dazu wird
der Handel für einige Minuten sowohl morgens als auch abends ausgesetzt. Vorhan-
dene und während der Auktion neu eingegebene Orders werden gesammelt, um nach
einem bestimmten Auktionsmechanismus den Preis pro Aktie zu ermitteln, aus dem
das maximale Handelsvolumen resultiert. Dabei haben die von uns berechneten, je nach
Modellvariante unterschiedlichen optimalen Kaufstrategien folgende Gemeinsamkeiten:
Nicht nur in den Zeitpunkten 0 und T , sondern auch auf den Auktionen selbst und
den unmittelbar angrenzenden Handelszeitpunkten sind diskrete Trades zu tätigen.
Außerdem wird zwischen den Auktionen, d.h. während des kontinuierlichen Handels,
weiterhin mit konstanter Intensität gehandelt.

Schließlich beleuchten wir, was passiert, wenn wir die Blockform des LOB durch belie-
bige positive, stetige Funktionen ersetzen. Erstaunlicherweise ändert dies die optimale
Strategie kaum. Lediglich die beiden diskreten Trades in 0 und T sind nicht mehr gleich
groß.



Abstract

The following work has been written during a student occupation at the Quantitative
Products Laboratory, which is a research institute of the Humboldt- and the Technical
University Berlin sponsored by the Deutsche Bank AG.
We consider the case of an institutional investor who wants to purchase (or analogously
liquidate) a given position of one asset representing a significant portion of daily tra-
ding volume in a fixed time period [0, T ].
In comparison to a small investor this entails liquidity cost whose modelling is of cru-
cial importance when looking for the minimal cost buying strategy for the institutional
investor. Our model is inspired by the paper of Obizhaeva and Wang [20] and is based
on an electronic trading system as Xetra. Trading occurs by stating limit and market
orders. When a market participant states a limit buy or sell order he indicates the
number of shares as well as the maximal respectively minimal price per share he is
willing to pay or rather accept. These limit orders are collected in the so-called limit
order book (LOB) and can be used by others by quoting a market order. We simplify
the LOB by assuming it having a block shape, which means that there is a constant
number of shares for each bid and ask price in the book. If the institutional investor
executes a market order with a larger number of shares than the block height, this
will increase the best ask price in the LOB. Due to the block shape of the LOB, this
price impact is linear in the number of shares of the market order. One component
of the impact is permanent and the decay of the temporary component is modelled
exponentially.

The question arises how to split the position of the institutional investor into market
orders in order to minimise the expected cost. Using dynamic programming, the op-
timal buying strategy is to put two equally sized discrete trades at the times 0 and T

and to spread the remaining shares uniformly over (0, T ). We see that this strategy is
time-consistent and that it is characterised by a constant level of temporary impact.
We present these results for discrete as well as continuous time market models. When
not only the expectation, but also the variance of the cost are considered for the opti-
misation by introducing a risk aversion coefficient, the optimal strategy changes in the
sense that trading is shifted forward in time. As already indicated, most of these results
are taken from the paper of Obizhaeva and Wang [20] and are going to be displayed in
an improved manner.

On this basis, we proceed with discussing various extensions and refinements of the
model: For instance we introduce an additional linear temporary impact which only
acts instantaneously and can be found in the work of Almgren and Chriss [2]. The
resulting optimal buying strategy then has a U-shape. Moreover, we replace constant
model parameters like the block height by their deterministic daily developing.

Additionally we examine how so-called call auctions can be incorporated into the model.
This is relevant as soon as our time horizon spans several trading days. We mean by an
auction the trading mechanism which can be found at most of the market places and
that serves for the determination of the opening and the closing price of the asset. To



do so, trading is frozen for a few minutes each morning and evening in order to assess
the price per share that results in a maximum traded volume. Hence, the auctions
disconnect the continuous trading that we modelled before. We finally formulate dif-
ferent ideas to model these auctions. The resulting optimal buying strategies all have
discrete trades not only at time 0 and T , but also on the auctions and directly next to
them. Their buying intensity is again constant during continuous trading.

Lastly, we shed light on what happens when the block shape of the LOB is replaced by
a positive, continuous function. Astonishingly, this changes the optimal strategy just
slightly. Only the discrete trades at 0 and T do not have equal size anymore.
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1. Introduction

1 Introduction

Let us assume that an institutional investor like an insurance company or a pension
fund comes to a trader with the order to purchase a big package of shares of one asset.
The investor requires a deadline on the scale of some days for the order to be fulfilled.
Typically, the considered position constitutes a significant fraction of the stock’s tra-
ding volume. Therefore, an instantaneous acquisition is not advisable, since it would
cause a large adverse price impact. Thus, the order should be split into several parts
with the intention to achieve minimal expectation and variance of the cost thereby
incurred. In doing so, it is critical to respect the fact that buying raises the stock
price, which inevitably affects the price for the shares still to be purchased afterwards.
Hence, the modelling of this price impact is of crucial importance. It consists of a
temporary and a permanent component as e.g. described in the empirical paper of
Holthausen [13]. The temporary part compensates the sellers for providing short-term
liquidity and the permanent one is due to the fact that the sellers presume the buyer
to possess asymmetric information like insider information. In the following we use
the same price impact as in the paper of Obizhaeva and Wang [20] because the tempo-
rary price impact is modelled more dynamic in comparison to other work on this field.
Another advantage of the model of Obizhaeva and Wang is that discrete and not only
continuous trading is allowed.
Although we only discuss the purchase of shares, the dual problem of selling shares can
be solved analogously.

We are going to model the problem described above in a market where trading is
processed solely using a so-called limit order book (LOB). An example for an elec-
tronic trading system with a LOB is the Xetra system of the Deutsche Börse, which
has operated since 1997 and is successively replacing classical floor trading. Market
participants can submit market and limit orders in order to trade with each other.
A limit order generally consists of three pieces of information that the investor has
to specify: how many shares he is willing to buy or rather sell at a fixed maximal or
minimal execution price respectively and the expiry date. These limit buy and sell
orders are then collected in the LOB and can be seen by all market participants. An
example of this can be found in Figure 1. The displayed highest bid price is smaller
than the lowest ask price at all times, since matching limit orders in the LOB are
executed immediately. We say that two limit orders are matching when one is a sell
and the other a buy order with the maximal buy price being higher or equal to the
minimal sell price. If the sell order is registered with xs ∈ IN shares and the limit buy
order with xb ∈ IN, the minimum of these two share amounts can finally be traded.

With a market order the investor is only stating the number of shares he is willing to
buy or sell. Market orders are executed right away by being assigned to the best limit
sell or buy orders by the system, which are then not recorded anymore in the LOB.
In short, limit orders are listed with their prices in the LOB and wait for other coun-
terpart limit and mainly market orders to come. Thus a limit order achieves a better
price compared to a market order, but bears the risk of being not or only partially
executed. In this respect, a market order consumes and a limit order provides liquid-
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1. Introduction

ity. A market sell order corresponds to a limit sell order with a limit price equal to zero.

The following priority rules are used in a general LOB market system to decide which
orders are executed: If there are limit orders having the same price, priority will be
given to the one which was set earlier. This is made clear in Figure 1 by means of the
two limit buy orders with price 967. For example a limit sell order arriving at 13.48h
with execution price 967 for example affects the first three limit buy orders. More
precisely 500 shares are sold at 967.5, 800 at 967 and the remaining 200 shares at 967
as well, such that the more recent order with price 967 only comprises 743 shares in
the LOB afterwards.
If the explained limit sell order would had spanned 2500, instead of 1500 shares with
price 967, the three best limit buy orders would all have been executed completely.
The remaining 2500 − 500 − 800 − 943 = 257 shares would stay in the LOB as limit
sell order and 967 is the new best ask price.
In general, the orders listed in the LOB are anonymous. Other attributes and function-
alities of the LOB can vary depending on the market place, for instance the number of
ticks of the LOB that are publicly visible.

Buy Orders Sell Orders
Buy vol. 25,743 Sell vol. 32,632

Number of orders 13 Number of orders 10

Avg. size 1,980 Avg. size 3,263

1 500 967.5 - 968.5 158 1

13:47 500 967.5 968.5 158 13:45

13:46 800 967.0 969.5 370 13:38

13:47 943 967.0 970.0 200 13:48

13:45 262 966.5 970.5 404 13:33

13:07 227 965.0 975.5 3,000 13:44

12:49 600 964.5 986.0 1,000 13:19

12:21 657 964.0 987.0 2,000 12:33

10:22 75 956.5 998.0 10,000 08:34

13:43 3,280 956.0 1000.0 15,000 07:55

09:33 899 954.0 1200.0 500 07:53

12:11 500 950.5

10:08 2,000 950.0

08:02 15,000 910.0

Figure 1: Fictitious example of a limit order book.

The proceeding work is organised as follows: In Chapter 2, the model of the LOB is
introduced. In Chapter 3 and 4 we derive the optimal buying strategy, where discrete
respectively continuous trading is allowed. Chapter 5 presents a possibility to extend
the LOB model by allowing time-dependent market depth, etc. In Chapter 6 to 8,
various ideas to include call auctions in the setting are discussed. Finally, Chapter 9
presents another extension of the model: More general forms of the LOB are considered.

2



2. Dynamics of the limit order book

2 Dynamics of the limit order book

Before we introduce our mathematical model of a LOB, which was established by
Obizhaeva and Wang in their paper [20], we want to state this interesting definition
of liquidity of a market by Kyle [16] as motivation. He distinguishes three aspects of
liquidity:

• Spread:
By tightness Kyle means the cost which arises from buying and selling a posi-
tion back-to-back. This aspect refers to the spread. The bid-ask spread is the
difference between the lowest selling and the highest buying price in a market.

• Depth:
The market depth is the size of the order which is necessary to change the best
bid or ask price respectively.

• Resiliency:
Resiliency is the ability of a market to recover from a price shock (see below).

The market model with one risky asset that will be introduced in the sequel, comprises
all of these three liquidity aspects. For this purpose let (Ω,F , P, (Ft)t∈[0,∞)) be the
probability space of our model. It is equipped with the filtration generated by a
one-dimensional Brownian motion W . Since in our context the market model is only
considered on a time horizon with the magnitude of a few days, it is sufficient to use
the simple Bachelier model for the equilibrium price process (St)t∈[0,∞) of the asset:

St = S0 + σWt,

where the constant σ constitutes the volatility of the asset. We do not make use of a
drift term and negative values might occur.

In order to describe how the LOB reacts to a sequence of purchases of shares, we first
have a look at the basic state of the LOB at time t = 0. The best ask price modelled
by the left-continuous process At is always larger than the best bid price Bt. For the
time being we neglect the impact that our purchase of the X0 shares will have on the
best ask and set At = St +

z
2

and Bt = St − z
2
, respectively, where the positive constant

z is the so-called bid-ask spread1. Typically, it holds that the higher the liquidity in
the market, the lower the spread. In this sense we could call S the mid-quote price. In
Figure 1 we thus have A0 = 968.5, B0 = 967.5 and z = 1.

As displayed in Figure 2, we assume in our simple model that the LOB has a block
form qI{y≤Bt,y≥At} where I denotes the indicator function.
That means that to every ask and bid price at time t ∈ [0,∞) there is a constant
number q ∈ R+ of shares listed in the LOB. Therefore, we call q the market depth.
It is the second measure of liquidity that we mentioned above. As implied by Figure 2,
bid and ask prices as well as the spread z are measured in so-called ticks. The tick-size

1Instead of a constant bid-ask spread we could also take a Bachelier model for z. This would not
change our later results.
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2. Dynamics of the limit order book

Figure 2: Block form of the LOB in t = 0.

is the smallest possible price change of the considered asset at the market place under
consideration (e.g. Euro cent).

The assumption of this block shape is of course a significant simplification of the true
market depth, which in reality is not constant. Rather it depends on the time as well
as the price. However, we will ease this simplification later in Chapter 5 and 9.
A typical evolution of the cumulative, i.e. summed up market depth can be found
in Figure 3, which is taken from the master thesis of Steinmann [23]. It has to be
interpreted as follows: A volume of v∗ shares at time t∗ and a price p∗ smaller than
the best bid Bt∗ means that there are limit buy orders over v∗ shares in the book at
time t∗ with a limit price between p∗ and Bt∗ . Therefore, the volume in Figure 3 is for
a fixed time t increasing for prices p bigger than At and decreasing for prices smaller
than Bt.

Since we focus on the purchase of shares by using market buy orders which consume
limit sell orders, the consideration of the left part of the LOB, containing the limit buy
orders, can be neglected for the time being.

When a market buy order over x0 ∈ N shares is executed at time t = 0, it is matched
with the lowest limit sell orders from the LOB. Therefore, the best ask price increases
to A0+:

(A0+ − A0) q = x0 ⇔ A0+ = A0 +
1

q
x0 =

(
S0 +

z

2

)
+

1

q
x0.

The average buying price of the market order is

P 0 =
A0 + A0+

2
= A0 +

1

2q
x0 =

(
S0 +

z

2

)
+

1

2q
x0.

The price increase caused by the order is 1
q
x0. Due to the block form of the LOB it is

linear in x0 and the higher, the smaller the market depth q is.

For the time being, we assume no other market orders, except of x0, occur. Then the
question arises how the explained price increase is offset by newly arriving limit sell

4



2. Dynamics of the limit order book

Figure 3: Actual form of the LOB which is depending on the price and time on the basis of the
Givaudan stock from April 1 to 16, 2002 at the Swiss Stock Exchange. Listed is the cumulative
volume!

orders. We call the part of the price impact which persists the permanent price
impact. It is measured by the constant λ and is due to the information we reveal to
the market. The other part of the price impact which will be compensated for is called
temporary price impact with the associated constant κ. That is we obtain

1

q
x0 = λx0 + κx0,

where we calibrate the constant λ such that 0 ≤ λ < 1
q

(e.g. λ = 1
2q

) and

κ :=
1

q
− λ > 0. (1)

The distinction between permanent and temporary price impact is undertaken by sev-
eral authors. But the question arises how long the temporary part exists. In the work
of Almgren and Chriss [2] it is only existent at the considered trading point in time
and disappears immediately afterwards. In contrast, Holthausen, Leftwich and Mayers
assume in [13] that the temporary impact stays constant during the remaining trading
day and is totally gone on the next. Both alternatives are unrealistic in the context of
a LOB market. The exponential decay in our model appears more reasonable:
The temporary price impact at time t caused by the purchase x0 at time zero amounts
to

κx0e
−ρt. (2)

Other market participants quote bit by bit new limit sell orders to fill in the gap κx0

and to eliminate this temporary pricing error. One can interpret the positive constant
ρ as a measure for the price recovery which we will call resiliency of the LOB. There

5



2. Dynamics of the limit order book

is no unanimous opinion on the size of this constant. According to Dong, Kempf and
Yadav [8] it is governed by parameters like transaction frequency, relative tick size,
average transaction size and realized spread. Depending on the market place, the as-
sociated half-life ϑ with e−ρϑ = 1

2
should lie in the range of a few minutes or even

seconds. The sample of heavily-traded New York Stock Exchange stocks used in [8]
has e.g. a resiliency of 60 percent over a one-minute horizon. Through the competitive
actions of other market participants only 40 percent of the temporary pricing error is
left after one minute.

Let us now introduce two more processes: The so-called intrinsic price Ŝt is made up
by the fair value St plus the permanent price impact which accumulated during [0, t).
In our case we have Ŝt = St + λx0.
We define the temporary impact by Dt := At − (Ŝt + z

2
). It is the deviation between

the actual best ask price and the intrinsic best ask price at time t. Both processes are
left-continuous. We use them in Figure 4 to summarise what we have explained so far.

Figure 4: Schematic description of the reaction of the LOB to the purchase in t = 0. Thereby τ is the
time which elapses between two trading points in time.

We get a totally analogous behaviour of the LOB when we have several purchases
x0, ..., xn at the times t0, ..., tn < t:
The intrinsic price results from

Ŝt = St + λ

n∑

i=0

xi

and the best ask price is

At =
(
St +

z

2

)
+ λ (X0 − Xt) + Dt (3)

=
(
St +

z

2

)
+ λ (X0 − Xt) + κ

n∑

i=0

xie
−ρ(t−ti).

6



2. Dynamics of the limit order book

Thus, the process D accounts for the whole temporary impact accumulated until time t

taking into account the exponential decay. With Xt we refer to the number of shares we
still have to buy in the time interval [t, T ] where T denotes the end of our trading time
interval, which is fixed by the investor. Both processes D and X are left-continuous.
After having presented our price dynamics, we can now start deriving optimal trading
strategies.

7



3. Optimal trading strategy in discrete time

3 Optimal trading strategy in discrete time

A trader gets the job to buy a package of X0 ∈ N shares of one kind in a fixed period
of time [0, T ]. As explained in the introduction, we assume X0 to be a substantial
amount of shares. Therefore the package has to be split up. In this chapter, we look
for the left-continuous, decreasing process (Xt)t∈[0,T ] with XT = 0 such that the trader
has minimal cost. We are not accounting for stock-exchange fees or transaction cost.

In order to approach the problem stated above and to compare the following results with
the ones of other authors, we firstly impose the restriction that trading is only possible
at fixed discrete trading times. Therefore, we consider the equidistant decomposition

0 = t0 < t1 < ... < tN = T

of the interval [0, T ] with constant

τ := tn+1 − tn =
T

N
.

Thus by choosing N appropriately large, the trading points in time may lie arbitrarily
near to each other. A trading strategy, or more precisely a buying strategy, is now
given by its deterministic coefficients x0, ..., xN ∈ IR≥0 with

N∑

n=0

xn = X0. (4)

We have xn = Xtn − Xtn+1 for n = 0, ..., N − 1 and accordingly XtN = XT =

X0 −
∑N−1

n=0 xn. Therefore, one sets xN = XT in order to assure (4).
Just as in [2] and [3] by Almgren and Chriss, we look for a static strategy whose
coefficients xn depend only on the information available at time t = 0. In a dynamic
strategy, however, the coefficients can depend on events from Ftn−1 .

We will say that a trading strategy is optimal if the expected total cost of the purchase
is minimised. This means that the buyer is risk-neutral. In the following the adapted
process Ct refers to the expected cost under the optimal strategy that will occur in the
interval [t, T ]. The expected total cost from time t = 0 onwards is given by

C0 := min
{x0,...,xN∈IR|

∑N
n=0 xn=X0}

E

[
N∑

n=0

P tnxn

]
. (5)

We will see in Proposition 1 that our optimal strategy {x0, .., xN} is as desired positive.
Therefore

C0 = min
{x0,...,xN∈IR≥0|

∑N
n=0 xn=X0}

E

[
N∑

n=0

P tnxn

]
.

We get the average buying price at time tn via equation (3) as

P tn =
Atn + Atn+

2
= Atn +

1

2q
xn =

(
Stn +

z

2

)
+ λ (X0 − Xtn) + Dtn +

1

2q
xn. (6)

8



3. Optimal trading strategy in discrete time

The accumulated temporary price impact is given by the dynamic:

D0 = 0, Dtn+1 = (Dtn + κxn) e−ρτ . (7)

That is the increase of the temporary impact due to the purchase at time tn, as well as
the decrease caused by the flow of newly arriving limit sell orders, are accounted for.

In the following proposition we state the optimal trading strategy and the process Ct

in our model explicitly.

Proposition 1. (Optimal trading strategy in discrete time)
The expected cost under the optimal strategy is

Ctn =
(
Stn +

z

2

)
Xtn + λX0Xtn +

[
αnX

2
tn

+ βnXtnDtn + γnD
2
tn

]
(8)

with the following sequences αn, βn and γn for n = 0, ..., N :

αn =
(1 + eρτ ) − qλ [(N − n)(eρτ − 1) + 2(1 + eρτ )]

2q [(N − n)(eρτ − 1) + (1 + eρτ )]
(9)

βn =
1 + eρτ

[(N − n)(eρτ − 1) + (1 + eρτ )]

γn =
(N − n) (1 − eρτ )

2κ [(N − n)(eρτ − 1) + (1 + eρτ )]
.

The associated optimal trading strategy is given by

x0 = xN = X0
1

(N − 1) (1 − e−ρτ ) + 2
and (10)

xn =
X0 − 2x0

N − 1
= X0

1 − e−ρτ

(N − 1) (1 − e−ρτ ) + 2
for n = 1, ..., N − 1.

In particular, we have 0 < xi < 1
2
X0 for i ∈ {0, N} and 0 < xn < 1

2
Xtn for n =

1, ..., N − 1.

The main part of the proof of the proposition above is Lemma 4. It is taken from
the Obizhaeva and Wang paper [20]. But in comparison to Obizhaeva and Wang, we
additionally managed to specify the sequences αn, βn and γn appearing in the optimal
strategy and in the cost term Ctn explicitly instead of only recursively. This reduces
e.g. the time to calculate the optimal strategy and particularly enables us to show its
positivity.

3.1 Interpretation of Proposition 1

Before we turn to the proof of Proposition 1 in Subsection 3.2, we want to analyse the
optimal strategy and cost term.

Figure 5 illustrates the result of Proposition 1. It shows the optimal trading strategies
{x0, ..., xN} for N = 10 and 50, respectively. These are characterised by two peaks

9



3. Optimal trading strategy in discrete time
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Figure 5: Optimal trading strategy in discrete time for N = 10 and N = 50. We set ρ = 2.31. The
values for the remaining parameters are given in Appendix A.1.

x0 and xN of equal size as well as an evenly spreading of the remaining shares over
the trading times t1, ..., tN−1. Here, xn refers to the number of shares to be traded at
time tn as a market buy order. If one intended to implement the strategy given in
Proposition 1 in practice, it would be advisable to make use of limit orders in order
to buy the xn shares in the time interval [tn, tn+1). Otherwise the spread has to be
crossed for each single trade. How this problem can be approached is presented e.g.
by Nevmyvaka et al. in [19].

The trading profile depicted in Figure 5 is intuitive and can be explained as follows:
The initial discrete trade of x0 shares uses the best limit sell orders. This has the
positive effect of resiliency–as stated in the work of Bias, Hillion and Spatt [6], new
limit sell orders are quickly attracted and are reducing the growing spread. The sellers
are willing to undercut the existing best ask price, since this increases the probability
that their limit sell orders are executed. But the initial purchase x0 should not be too
big as this would unnecessarily increase the average price per share of the succeeding
orders.
The following constant trading matches the newly attracted limit sell orders. Charac-
teristic for the optimal strategy is that the traded number of shares per trading period
is chosen such that the deviation between the actual and the intrinsic best ask price
stays on a constant level. This will be shown in Lemma 6 and is illustrated in Figure 6.
Therefore, the flow of incoming limit sell orders is constant over (0, T ).
The trade xN at the end of the time horizon [0, T ] has a high price impact. But since
the purchase is finished anyway, this is only relevant for the last trade itself. A more
detailed discussion of the nature of the optimal strategy can be found in Subsection 4.1
where the optimal strategy in continuous trading time will be analysed.

The structure of C0 as appearing in (8) is notable. For example, we have

C0 =
(
S0 +

z

2

)
X0 + (λ + α0) X2

0 .

The expected cost under the optimal strategy to be assessed per share C0

X0
are linear in

X0.

Let us now analyse how C0 depends on the time horizon T when keeping τ constant.

10



3. Optimal trading strategy in discrete time

Figure 6: The two diagrams show the permanent and the temporary impact respectively belonging to
the optimal strategy illustrated in the first diagram of Figure 5.

According to the form of α0 from (9) we have

C0(N) =
(
S0 +

z

2

)
X0 + λX2

0 + X2
0

(1 + eρτ ) − qλ [N(eρτ − 1) + 2 (1 + eρτ )]

2q [N (eρτ − 1) + (1 + eρτ )]
,

which is decreasing in N . Since α0 converges to −λ
2

for N → ∞ we get

lim
N→∞

C0(N) =
(
S0 +

z

2

)
X0 +

λ

2
X2

0 and C0(0) =
(
S0 +

z

2

)
X0 +

1

2q
X2

0 .

Hence, limN→∞ C0(N) < C0(0) for λ < 1
q
. This is illustrated in Figure 7. If we set

λ = 1
q
, i.e. all impact is permanent, C0 would be constant in N with C0(N) ≡ C0(0) =(

S0 + z
2

)
X0 + 1

2q
X2

0 , since α0 equals − 1
2q

X2
0 .

C (N) [in ticks]0

N10 20 30 40

4.007´ 108

4.008´ 108

4.009´ 108

4.01´ 108

4.011´ 108

Figure 7: Plot of the cost function C0(N) for τ = 1

10
and ρ = 20. All other parameters can be found

in the appendix.
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3. Optimal trading strategy in discrete time

3.2 Proof of Proposition 1

Let us now turn to the proof of Proposition 1. The main part of it is Lemma 4. It
can be found in similar form in the Obizhaeva and Wang paper [20]. But in order to
express the backward recursions occurring in Lemma 4 explicitly and to formally prove
the existence of the optimal strategy, we need the following two auxiliary lemmata:

Lemma 2. (Explicit formulas for the auxiliary sequences)
We consider the sequences defined by the following backward recursions:

αN =
1

2q
− λ and αn = αn+1 −

1

4
δn+1ε

2
n+1 (11)

βN = 1 and βn = βn+1e
−ρτ +

1

2
δn+1εn+1φn+1

γN = 0 and γn = γn+1e
−2ρτ − 1

4
δn+1φ

2
n+1

Thereby δ, ε and φ are defined as

δn :=

(
1

2q
+ αn − βnκe−ρτ + γnκ

2e−2ρτ

)−1

(12)

εn := λ + 2αn − βnκe−ρτ

φn := 1 − βne−ρτ + 2γnκe−2ρτ

Then we can write these six sequences explicitly for n = 0, ..., N as

αn =
(1 + eρτ ) − qλ [(N − n) (eρτ − 1) + 2 (1 + eρτ )]

2q [(N − n) (eρτ − 1) + (1 + eρτ )]
(13)

βn =
1 + eρτ

[(N − n) (eρτ − 1) + (1 + eρτ )]

γn =
(N − n) (1 − eρτ )

2κ [(N − n) (eρτ − 1) + (1 + eρτ )]

δn =
2e2ρτ [(N − n) (eρτ − 1) + (1 + eρτ )]

κ [(N − n) (1 − e2ρτ ) + (N − n + 2) (e3ρτ − eρτ )]
(14)

εn =
κ (eρτ − e−ρτ )

[(N − n) (eρτ − 1) + (1 + eρτ )]

φn =
(N − n + 1) (eρτ − e−ρτ ) − (N − n) (1 − e−2ρτ )

[(N − n) (eρτ − 1) + (1 + eρτ )]

Proof: We show by backward induction that the explicit formulae given in (13) for α,
β and γ follow from (11) and (12). For n = N it emanates from (13) as desired

αN =
(1 + eρτ ) − 2qλ (1 + eρτ )

2q (1 + eρτ )
=

1

2q
− λ, βN = 1 and γN = 0.

As induction hypothesis we substitute our expressions for αn+1, βn+1 and γn+1 from
(13) to show (14):

12



3. Optimal trading strategy in discrete time

δ−1
n+1 :=

1

2q
+ αn+1 − βn+1κe−ρτ + γn+1κ

2e−2ρτ

=

1
q
e2ρτ [(N − n + 1)eρτ − (N − n − 3)] − λe2ρτ [(N − n + 1)eρτ − (N − n − 3)]

2e2ρτ [(N − n − 1) (eρτ − 1) + (1 + eρτ )]

+
−2κ (eρτ + e2ρτ ) + κ(N − n − 1) (1 − eρτ )

2e2ρτ [(N − n − 1) (eρτ − 1) + (1 + eρτ )]

=
κ [(N − n − 1) (1 − e2ρτ ) + (N − n + 1) (e3ρτ − eρτ )]

2e2ρτ [(N − n − 1) (eρτ − 1) + (1 + eρτ )]

εn+1 := λ + 2αn+1 − βn+1κe−ρτ

=

1
q
(1 + eρτ ) − λ (1 + eρτ ) − κ (e−ρτ + 1)

[(N − n − 1) (eρτ − 1) + (1 + eρτ )]

=
κ (eρτ − e−ρτ )

[(N − n − 1) (eρτ − 1) + (1 + eρτ )]

φn+1 := 1 − βn+1e
−ρτ + 2γn+1κe−2ρτ

=
[(N − n − 1) (eρτ − 1) + (1 + eρτ )] − (e−ρτ + 1) + (N − n − 1) (e−2ρτ − e−ρτ )

[(N − n − 1) (eρτ − 1) + (1 + eρτ )]

=
(N − n) (eρτ − e−ρτ ) − (N − n − 1) (1 − e−2ρτ )

[(N − n − 1) (eρτ − 1) + (1 + eρτ )]

Putting these terms into the three equations in (11) we get the desired result (13) by
another long calculation.

Lemma 3. (δ is strictly positive)
For the sequence δ as given in Lemma 2 we have:

δn > 0 for n = 1, ..., N.

Proof: Because of the constants ρ and τ being strictly positive, the numerator of δn

from (14) for n = 1, ..., N is strictly positive. Since κ > 0 as well, we only have to
consider the term

(N − n)
(
1 − e2ρτ

)
+ (N − n + 2)

(
e3ρτ − eρτ

)

= (N − n)
(
1 − eρτ − e2ρτ + e3ρτ

)
+ 2

(
e3ρτ − eρτ

)

of the denominator. It is greater than zero because the function

h(x) := 1 − ex − e2x + e3x

is strictly positive for x = ρτ > 0.

13



3. Optimal trading strategy in discrete time

We can now state our central lemma within the proof of Proposition 1. Its proof is a
backward-induction which is done in detail here, since much of our later results will
have the same proof structure.

Lemma 4. (Dynamic programming)
The expected cost under the optimal strategy is

Ctn =
(
Stn +

z

2

)
Xtn + λX0Xtn +

[
αnX2

tn
+ βnXtnDtn + γnD

2
tn

]
. (15)

The associated optimal trading strategy is given by

xn =
1

2
δn+1 [εn+1Xtn − φn+1Dtn ] (16)

for n = 0, ..., N − 1 and xN = XT , where the sequences αn, βn and γn for n = 0, ..., N
are given in (11) and δn, εn and φn for n = 1, ..., N can be found in (12).

Proof: We are considering the control problem (5)

C0 = min
{x0,...,xN∈IR|

∑N
n=0 xn=X0}

E

[
N∑

n=0

P tnxn

]
,

which we will tackle analogous to the paper of Bertsimas and Lo [5] by using dynamic
programming.

In the following we show (15) via (6) and backward induction. The optimal trading
strategy (16) follows from this backward induction, too.
In the case of n = N , i.e. t = tN = T , we have to buy the remaining XT shares for a
average price of P T =

(
ST + z

2

)
+ λ (X0 − XT ) + DT + 1

2q
XT . Consequently the cost

in T is described by

CT = P T XT =
(
ST +

z

2

)
XT + λX0XT +

(
1

2q
− λ

)
X2

T + XT DT

=
(
ST +

z

2

)
XT + λX0XT +

[
αNX2

T + βNXT DT

]
.

This shows the induction basis.
Let us now consider t = tn−1. Then we can make use of dynamic programming, since
the optimal control {x0, ..., xN} has to be optimal for every trading point in time tn
onwards. This thought leads us to the following Bellman equation

Ctn−1 = min
xn−1∈IR

(
P tn−1xn−1 + E

[
Ctn |Ftn−1

])
, (17)

Because of the induction hypothesis and the dynamic given in (7) for Dtn we can form

Ctn =
(
Stn +

z

2

)
Xtn + λX0Xtn +

[
αnX2

tn
+ βnXtnDtn + γnD

2
tn

]

=
(
Stn +

z

2

) (
Xtn−1 − xn−1

)
+ λX0

(
Xtn−1 − xn−1

)
+

[
αn

(
Xtn−1 − xn−1

)2
+ βn

(
Xtn−1 − xn−1

) (
Dtn−1 + κxn−1

)
e−ρτ +

γn

(
Dtn−1 + κxn−1

)2
e−2ρτ

]
.

14



3. Optimal trading strategy in discrete time

As a reminder, τ stands for the distance between the trading times tn and tn−1. Plug-
ging this term into (17) and respecting that S is a martingale we find

Ctn−1 = min
xn−1∈IR

((
Stn−1 +

z

2

)
Xtn−1 + λX0Xtn−1 − λXtn−1xn−1 + Dtn−1xn−1

+
1

2q
x2

n−1 +
[
αn(Xtn−1 − xn−1)

2 + βn

(
Xtn−1 − xn−1

) (
Dtn−1 + κxn−1

)
e−ρτ

+ γn

(
Dtn−1 + κxn−1

)2
e−2ρτ

])
,

where at this stage we used the assumption that X is deterministic.
Let us now define

fn−1(xn−1) :=
(
Stn−1 +

z

2

)
Xtn−1 + λX0Xtn−1 − λXtn−1xn−1 + Dtn−1xn−1 +

1

2q
x2

n−1 +

[
αn

(
Xtn−1 − xn−1

)2
+ βn

(
Xtn−1 − xn−1

) (
Dtn−1 + κxn−1

)
e−ρτ +

γn

(
Dtn−1 + κxn−1

)2
e−2ρτ

]
.

Consequently we have Ctn−1 = minxn−1∈IR fn−1(xn−1). Then fn−1 is quadratic in xn−1

and can also be written as:

fn−1(xn−1) = δ−1
n

[
xn−1 −

1

2
δn

(
εnXtn−1 − φnDtn−1

)]2

+

(
Stn−1 +

z

2

)
Xtn−1 + λX0Xtn−1 +

X2
tn−1

[
αn − 1

4
δnε2

n

]
+

Xtn−1Dtn−1

[
βne−ρτ +

1

2
δnεnφn

]
+

D2
tn−1

[
γne

−2ρτ − 1

4
δnφ

2
n

]

We notice that the parabola fn−1 has exactly one minimum in

xn−1 =
1

2
δn

(
εnXtn−1 − φnDtn−1

)
,

since f ′′
n−1(xn−1) = 2δ−1

n is according to Lemma 3 strictly positive. By plugging this
minimum into the parabola fn−1, which is opening to the top, and by having a look
at the backward recursions (11) we get the desired term for Ctn−1 . Particularly this
proves the existence of a unique optimal trading strategy.

Remark 5. In order to get a better understanding of the structure of the above
dynamic programming principle, we want to highlight the following fact. We have
Ctn−1 = minxn−1∈IR fn−1(xn−1) with

fn−1(xn−1) =
(
Stn−1 +

z

2

)
Xtn−1 + λX0Xtn−1 +

αnX2
tn−1

+ βne
−ρτXtn−1Dtn−1 + γne

−2ρτD2
tn−1

+

δ−1
n x2

n−1 − εnxn−1Xtn−1 + φnxn−1Dtn−1

15



3. Optimal trading strategy in discrete time

That is α, β and γ are the sequences belonging to X2, XD and D2 and δ−1, ε and φ

belong to x2, xX and xD. This systematic will show up with slightly different sequences
α, ..., φ in the following backward inductions involving dynamic programming, too.

So far we have not checked if the optimal strategy given in (16) has positive xn for
n = 0, ..., N . But this has to be met, since we neglected the left hand side of the LOB
as mentioned in Section 2, i.e. sales of shares are not allowed in our model. Therefore,
we work out the optimal strategy (16) explicitly in Lemma 7 in order to directly derive
the desired non-negativity. Again we need an auxiliary lemma to do so:

Lemma 6. (The temporary price impact is constant under the optimal strategy)
Let us assume we choose the strategy x0 = X0

1
(N−1)(1−e−ρτ )+2

and xn = X0−2x0

N−1

for n = 1, ..., i − 1. Then
Dti = κx0e

−ρτ

Proof: We show the lemma by forward induction over i and use that the process D

has the dynamic D0 = 0 and Dtn =
(
Dtn−1 + κxn−1

)
e−ρτ for n = 1, ..., N as given

in (7).
We get immediately Dt1 = κx0e

−ρτ and the following induction step, where we know
according to the induction hypothesis that Dti−1

= κx0e
−ρτ :

Dti =
(
Dti−1

+ κxi−1

)
e−ρτ =

(
κx0e

−ρτ + κ
X0 − 2x0

N − 1

)
e−ρτ = κx0e

−ρτ

We get the last equation by plugging in x0 explicitly.

Lemma 7. (Non-negativity and explicit form of the optimal strategy)
The optimal strategy to be found in (16) of Lemma 4 can be written explicitly as

x0 = xN = X0
1

(N − 1) (1 − e−ρτ ) + 2
and

xn =
X0 − 2x0

N − 1
= X0

1 − e−ρτ

(N − 1) (1 − e−ρτ ) + 2
for n = 1, ..., N − 1.

Proof: According to Lemma 4 the first trade of the optimal strategy is

x0 =
1

2
δ1[ε1X0 − φ1D0] =

1

2
X0δ1ε1

because of D0 = 0. By inserting the explicit values of δ1 and ε1 from Lemma 2, we get
as desired by direct calculation

x0 = X0
e2ρτ (eρτ − e−ρτ )

[(N − 1) (1 − e2ρτ ) + (N + 1) (e3ρτ − eρτ )]
= X0

1

(N − 1) (1 − e−ρτ ) + 2
.

Analogously, we can now consider x1 bearing in mind that Xt1 = X0 − x0 and
Dt1 = κx0e

−ρτ :

x1 =
1

2
δ2 [ε2Xt1 − φ2Dt1 ]

=
(e3ρτ − eρτ ) (X0 − x0) − x0 [(N − 1) (e2ρτ − 1) − (N − 2) (eρτ − e−ρτ )]

(N − 2) − Neρτ − (N − 2)e2ρτ + Ne3ρτ

= X0
1 − e−ρτ

(N − 1) (1 − e−ρτ ) + 2
,
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where again a lengthy arithmetic calculation is involved in the last step.

We can once more do a forward induction in order to show

xn =
X0 − 2x0

N − 1
for n = 1, ..., N − 1.

Since we have already considered x1, the induction basis is already proved. According
to the induction hypothesis we know that x1 = ... = xi−1 = X0−2x0

N−1
and we can therefore

use Lemma 6, which states that Dti = κx0e
−ρτ . Hence we get the following induction

step by using the explicit formulas for δ, ε and φ out of Lemma 2 and by plugging in
x0 = X0

1
(N−1)(1−e−ρτ )+2

:

xi =
1

2
δi+1

[
εi+1

(
X0 − x0 − (i − 1)

X0 − 2x0

N − 1

)
− φi+1κx0e

−ρτ

]

=
X0 (e3ρτ − eρτ ) N−i

N−1

(N − i − 1) (1 − e2ρτ ) + (N − i + 1) (e3ρτ − eρτ )

+
x0

[
(e3ρτ − eρτ ) 2i−N−1

N−1
− (N − i) (e2ρτ − 1) + (N − i − 1) (eρτ − e−ρτ )

]

(N − i − 1) (1 − e2ρτ ) + (N − i + 1) (e3ρτ − eρτ )

= X0
1 − e−ρτ

(N − 1) (1 − e−ρτ ) + 2

In the end we have of course

xN = X0 − x0 − (N − 1)
X0 − 2x0

N − 1
= x0.

This ultimately proves Proposition 1.

3.3 Alternative models

In order to get a better insight into the Obizhaeva and Wang model [20], which we
frequently use throughout this thesis, this subsection describes an alternative model
where the whole impact is linear and permanent. At the same time this digression
serves as a motivation for Subsection 3.4 where the Obizhaeva and Wang model is
extended by a second component of temporary impact.

As mentioned at the beginning of Chapter 3, some authors like e.g. Almgren and
Chriss in [2] work with fixed discrete trading times, instead of optimising over them as
well by taking continuous trading time. In the simplest case introduced by Bertsimas
and Lo [5], the whole price impact is modelled linearly with constant λ. Accordingly,
the average price per share at time tn is

P tn =
(
Stn +

z

2

)
+ λ

n∑

i=0

xi. (18)
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Comparing this with the average price in the LOB model of Obizhaeva and Wang given
by (6) and (7), (18) is a special case of the LOB model with

λ = κ =
1

2q
and ρ = ∞.

When we now consider the optimising problem (5) in this special case, we obtain

C0 =
(
S0 +

z

2

)
X0 + min

{x0,...,xN∈IR|
∑N

n=0 xn=X0}
λ

N∑

n=0

(
xn

n∑

i=0

xi

)
. (19)

Rearranging the sum and setting XtN+1
:= 0, a short calculation yields

N∑

n=0

(
xn

n∑

i=0

xi

)
=

N∑

n=0

xnXtn =

N∑

n=0

(
Xtn − Xtn+1

)
Xtn =

1

2

N∑

n=0

[
X2

tn
− X2

tn+1
+
(
Xtn − Xtn+1

)2]
=

1

2
X2

0 +
1

2

N∑

n=0

x2
n. (20)

Now it is obvious that the term xn occurs quadratic in C0. Therefore, the minimum
takes place in x0 = ... = xN = X0

N+1
. This means that in this special case it is optimal

to spread the purchase of the X0 shares evenly over the N +1 trading times. Contrary
to Figure 5 there are no large trades in t = 0 and T . We obtain

C0 =
(
S0 +

z

2

)
X0 +

λ

2
X2

0

(
1 +

1

N + 1

)
=
(
S0 +

z

2

)
X0 +

X2
0

4q

N + 2

N + 1
.

If we try now to optimise over the trading times in (19) as well by letting τ converge
to zero or N to infinity respectively, this will lead to the following problem: If we take
an arbitrary continuously differentiable trading strategy (Xt)t∈[0,T ] with XT = 0 and
set xn = Xtn −Xtn+1 for n = 0, ..., N , then all these strategies will cause the same cost

(
S0 +

z

2

)
X0 +

λ

2
X2

0 .

This is due to the fact that the term from (20) converges to zero

lim
N→∞

N∑

n=0

x2
n = lim

N→∞

N∑

n=0

τ 2

(
Xtn+1 − Xtn

τ

)2

= 0,

since the derivative of X is bounded on [0, T ] and τ = T
N

. This is definitely not realistic.
E.g. one could shift excessively much trading forward in time without any cost increase
as long as the strategy stays continuous. Thus, having only permanent impact is not
satisfying.
In order to counteract this problem, Almgren and Chriss [2] as well as Huberman and
Stanzl [14] introduce a temporary price impact h(xn

τ
) in order to penalize continuous
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3. Optimal trading strategy in discrete time

trading with high intensities. At the same time two components of price impact are
empirically more reasonable. That is

P tn =
(
Stn +

z

2

)
+ λ

n∑

i=0

xi + h(
xi

τ
)

with an increasing function h, where compared to the model of Obizhaeva and Wang
[20] the temporary impact decays immediately instead of exponentially. The function
h is modelled linearly in the simplest case: h(xn

τ
) = η

τ
xn with a positive constant η.

In [3], Almgren and Chriss presume the form h(v) = ηvβ and determine β = 3
5

em-
pirically. Nevertheless, there remain two disadvantages when the temporary impact
is only modelled by the function h: In contrast to the temporary impact in the LOB
model, h(xn

τ
) is not influencing the succeeding prices. This is especially unsatisfying

when the distance between trading times τ is small. Furthermore, discrete trading is
restrained because the temporary impact h(xn

τ
) for a discrete trade xn > 0 at tn would

converge to infinity for τ → 0.

However, the question arises how the optimal strategy will behave if we combine the
two different types of temporary impacts mentioned above. We address this topic in
the next subsection.

3.4 Two components of temporary impact

Figure 8: Optimal strategies x0, ..., xN for η = 0, 10−6, 10−5 and 1, respectively. The Obizhaeva and
Wang model corresponds to η = 0 and for large η we get the Almgren and Chriss result. The other
parameters are set to T = 1, N = 20, X0 = 100,000, ρ = 2 and λ = κ = 1/10,000.

We now consider a model with two components of linear temporary impact, which
represents a mixture of the models of Obizhaeva and Wang [20] as well as Almgren
and Chriss [2]. In this combined model, the average price incorporates not only the
permanent impact and an exponentially decaying linear temporary impact as in the
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3. Optimal trading strategy in discrete time

LOB model of Obizhaeva and Wang, but also an only instantaneously existing linear
temporary impact h(xn

τ
) = η

τ
xn. Therefore it can be written as

P tn =
(
Stn +

z

2

)
+ λ (X0 − Xtn) + Dtn +

1

2q
xn +

η

τ
xn

=
(
Stn +

z

2

)
+ λ (X0 − Xtn) + Dtn + η̃xn,

where we used (6) and defined

η̃ :=
λ + κ

2
+

η

τ
.

The processes S, X and D are defined as before. In comparison to (6), the term 1
2q

xn

is replaced by η̃xn. We can calculate the optimal strategy by using Lemma 4 and
replacing 1

2q
by η̃ in αN and δn. The optimal strategies x0, ..., xN for different choices

of η are given in Figure 8. When we set η = 0, we are in the Obizhaeva and Wang
framework and our optimal strategy consists of two discrete trades x0, xN and constant
trading in between. When we select high values of η, we get x0 ≈ ... ≈ xN , which is
the simple Almgren and Chriss case as derived in the last section. For moderate values
of η, we get a U-shaped pattern for the optimal strategy x0, .., xN . These U-shaped
strategies are marked in black in Figure 8. All strategies are symmetric in time, in
particular x0 = xN .
Figure 9 shows that the optimal strategy remains U-shaped for τ → 0 or N → ∞
respectively.

Figure 9: Optimal strategies x0, ..., xN for η = 10−6 and N = 100, 200, 500, 1000 top down. The other
parameters are chosen as in Figure 8. On the x-axis we plotted the time instead of n, since N varies.

3.5 Variance of the cost

We take again the Obizhaeva and Wang pricing model and assume that the buyer is
risk averse. This means that he not only wants to minimise the expectation of the cost
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3. Optimal trading strategy in discrete time

resulting from the purchase of the X0 shares, but also the risk of deviations from this
expectation. We choose the variance of the cost to quantify this risk and consider the
following mean-variance optimising problem instead of (5)

C0 = min
{x0,...,xN∈IR|

∑N
n=0 xn=X0}

{
E

[
N∑

n=0

P tnxn

]
+

1

2
a Var

(
N∑

n=0

P tnxn

)}
. (21)

With the constant a ≥ 0 we denominate the risk aversion coefficient of the institutional
investor and we take P tn as given in (6).
We show in the following lemma how the variance in (21) can be simplified.

Lemma 8 (Variance in discrete time). The cost of the trading strategies x0, ..., xN ∈ IR
with xN = XT feature the following variance:

Var(
N∑

n=0

P tnxn) = σ2τ

N∑

n=1

X2
tn

Proof: By taking into account that S is the only stochastic process in P tn , we can
readily evaluate

Var

(
N∑

n=0

P tnxn

)
= Var

(
N∑

n=0

Stnxn

)
= Var

(
N∑

n=0

Stn

(
Xtn − Xtn+1

)
)

=

Var

(
S0X0 +

N∑

n=1

(
Stn − Stn−1

)
Xtn

)
=

N∑

n=1

Var
(
σ
(
Wtn − Wtn−1

)
Xtn

)
=

N∑

n=1

σ2X2
tn

τ.

We get the following generalisation of Lemma 4.

Corollary 9. (Optimal trading strategy in discrete time with risk aversion)
The combination of expectation and variance of the cost under the optimal strategy as
given in (21) is

Ctn =
(
Stn +

z

2

)
Xtn + λX0Xtn +

[
α̃nX2

tn
+ β̃nXtnDtn + γ̃nD2

tn

]
. (22)

The associated optimal strategy is given by

xn =
1

2
δ̃n+1

[
ε̃n+1Xtn − φ̃n+1Dtn

]
(23)

for n = 0, ..., N−1 and xN = XT . The parameters in (22) and (23) are given recursively
by

α̃N =
1

2q
− λ and α̃n = α̃n+1 −

1

4
δ̃n+1ε̃

2
n+1 +

1

2
aσ2τ

β̃N = 1 and β̃n = β̃n+1e
−ρτ +

1

2
δ̃n+1ε̃n+1φ̃n+1

γ̃N = 0 and γ̃n = γ̃n+1e
−2ρτ − 1

4
δ̃n+1φ̃

2
n+1
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3. Optimal trading strategy in discrete time

for n = 0, ..., N and

δ̃n =
( 1

2q
+ α̃n − β̃nκe−ρτ + γ̃nκ

2e−2ρτ +
1

2
aσ2τ

)−1

ε̃n = λ + 2α̃n − β̃nκe−ρτ + aσ2τ

φ̃n = 1 − β̃ne
−ρτ + 2γ̃nκe−2ρτ

for n = 1, ..., N .

Proof: The proof of Corollary 9 can be done analogously to the proof of Lemma 4.
But in the induction step we get because of Lemma 8

Ctn−1 = min
xn−1∈IR

(
P tn−1xn−1 +

1

2
aσ2τX2

tn
+ E

[
Ctn |Ftn−1

])
.

Because of
X2

tn
=
(
Xtn−1 − xn−1

)2
= X2

tn−1
− 2xn−1Xtn−1 + x2

n−1

and Remark 5 there are only slightly changes in comparison to Lemma 4. We only
have to modify α, δ and ε as given in Corollary 9.

In comparison to the sequences in the proof of Proposition 1, we only have to incorpo-
rate the extra term 1

2
aσ2τ in case of α and δ, and the term aσ2τ in case of ε.

Remark 10. In the following chapters, which are dealing with auctions, we often make
use of the dynamic programming principle in order to optimise the expectation of the
cost. Although we are not including a supplementary consideration of the variance
analogously to Corollary 9 there, it should be possible to do so.

The optimal strategy according to Corollary 9 is illustrated in Figure 10. It does not
only depend on the parameters ρ and T , but also on κ, a and σ and is consequently
more complex than the strategy from Proposition 1. The figure shows that the increase
of the risk aversion a or the choice of a higher volatility σ leads to a shift of the trading
forward in time, which is exactly what one would expect.
So far we have concentrated ourselves on discrete trading time. We derived and ex-
plained the trading strategy as given in Figure 5, which minimises the expected cost.
Furthermore, we combined our model with the one of Almgren and Chriss and incor-
porated the variance of the cost by a mean-variance ansatz.
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4. Optimal trading strategy in continuous time
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Figure 10: Optimal trading strategies with risk aversion in discrete time for N = 10. Analogous to
the first diagram in Figure 5, x0 to x10 are plotted, but for different risk aversion coefficients a. In
the upper picture we set ρ = 2.31 and ρ = 20 in the lower one. We fixed σ = 0.025 and the remaining
parameters can be found in the appendix.

4 Optimal trading strategy in continuous time

Here we will again discuss the problem described in the previous chapter, but we will
allow for trading in continuous time.

Definition 11. (Trading strategy X) The deterministic, left-continuous and decreasing
process (Xt)t∈[0,T ] of shares still to be bought is called trading strategy.

We want to consider trading strategies that can be described by their density and their
jumps, which will become clear in the following definition.

Definition 12. (Buying intensity and jumps of X)
Let xt := Xt − Xt+ be the jump of the trading strategy X at time t and

T := {t ∈ [0, T ]|xt 6= 0}

the set of the jumping times. We call the positive function µ with

X0 − Xt =

∫ t

0

µudu +
∑

u∈T
u<t

xu

buying intensity or continuous part of the trading strategy.
Let Θ be the set of all tuples {(µt)t∈[0,T ], (xt)t∈T }.
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4. Optimal trading strategy in continuous time

The process X is left-continuous and decreasing on the compact interval [0, T ]. There-
fore, T is countable and the sum in the definition is well defined. We know that each
trading strategy X can be identified with a tuple {(µt)t∈[0,T ], (xt)t∈T } and vice versa.
Therefore, we will use these two expressions synonymously.

Using the terms introduced in Definition 12, we can formulate our best ask price in the
LOB model at time t as

AΘ
t =

(
St +

z

2

)
+ λ (X0 − Xt) + Dt. (24)

The superscript Θ is meant to reveal the fact that the process depends on the considered
trading strategy X. Similar to the discrete time case, the best ask price in (24) is made
up of four components:
First of all we have the equilibrium price St, which does not depend on the considered
strategy. The second component is half of the spread z. The permanent price impact,
which is linear in the number of shares already bought until t, is the third component.
Finally we have the temporary impact Dt or more precisely DΘ

t . Analogously to the
discrete time case (7) it is given by

D0 = 0 and Dt =

∫ t

0

(−ρDu + κµu) du + κ
∑

u∈T ,u<t

xu. (25)

The total cost for a fixed strategy X is then

C̃Θ
0 :=

∫ T

0

AΘ
u µudu +

∑

u∈T

(
AΘ

u +
1

2q
xu

)
xu

and we look for the trading strategy that causes minimal expected cost such that we
get the following optimising problem

C0 := min
Θ

E

[
C̃Θ

0

]
. (26)

In the proposition below, which is also found in the Obizhaeva and Wang paper [20],
we state the optimal trading strategy with the associated cost process Ct. It is a special
case of Proposition 15, which we will prove later on using control theory. Nevertheless,
we want to give an intuition in Remark 14 how to derive Proposition 13 from the
discrete time case as stated in Proposition 1 by letting τ converge to zero. This is only
possible thanks to having explicit forms of the sequences α to φ.

Proposition 13. (Optimal trading strategy in continuous time)
The expected cost under the optimal strategy is

Ct =
(
St +

z

2

)
Xt + λX0Xt +

[
αtX

2
t + βtXtDt + γtD

2
t

]
with

αt =
κ

ρ(T − t) + 2
− λ

2
, βt =

2

ρ(T − t) + 2
and γt =

−ρ(T − t)

2κ [ρ(T − t) + 2]
.

The associated optimal trading strategy is given by

x0 = xT =
X0

ρT + 2
and µt ≡

ρX0

ρT + 2
for t ∈ (0, T ).
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4. Optimal trading strategy in continuous time

Remark 14. Proposition 13 can be deduced from Proposition 1 when we let the step
size τ converge to zero or the number of steps N = T

τ
to infinity. In this way we get

the optimal strategy in continuous trading time by using L’Hospital’s Rule:

lim
N→∞

x0 = lim
N→∞

X0

(N − 1)
(
1 − e−ρ T

N

)
+ 2

=
X0

ρT + 2

and for n = 1, ..., N − 1 we have

lim
N→∞

xn = lim
N→∞

X0
1 − e−ρ T

N

(N − 1)
(
1 − e−ρ T

N

)
+ 2

= 0.

Therefore, the intensity of trading is

µt =
X0 − 2 X0

ρT+2

T
=

ρX0

ρT + 2
.

Let us now examine the terms α, β and γ. Setting N = T
τ

and n = t
τ

we get

lim
τ→0

(N − n) (eρτ − 1) = (T − t) lim
τ→0

eρτ − 1

τ
= ρ(T − t).

Therefore, the limiting behaviour as τ → 0 can be easily identified for α, β and γ as

lim
τ→0

αn = lim
τ→0

1
2q

(1 + eρτ ) − λ
2
[(N − n) (eρτ − 1) + 2 (1 + eρτ )]

[(N − n) (eρτ − 1) + (1 + eρτ )]

=

1
q
− λ

2
[ρ(T − t) + 4]

ρ(T − t) + 2
=

κ

ρ(T − t) + 2
− λ

2
= αt

lim
τ→0

βn = lim
τ→0

1 + eρτ

[(N − n) (eρτ − 1) + (1 + eρτ )]
=

2

ρ(T − t) + 2
= βt

lim
τ→0

γn =
1

2κ
lim
τ→0

−(N − n) (eρτ − 1)

[(N − n) (eρτ − 1) + (1 + eρτ )]
=

−ρ(T − t)

2κ [ρ(T − t) + 2]
= γt.

If we again want to incorporate the risk aversion of the institutional investor in form
of a risk aversion coefficient a ∈ IR≥0 into the objective function to be minimised, we
will obtain instead of (26)

C0 = min
Θ

{
E

[
C̃Θ

0

]
+

1

2
a Var

(
C̃Θ

0

)}
. (27)

Proposition 15. (Optimal trading strategy in continuous time with risk aversion)
The cost process under the optimal strategy is

Ct =
(
St +

z

2

)
Xt + λX0Xt +

[
αtX

2
t + βtXtDt + γtD

2
t

]
.
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4. Optimal trading strategy in continuous time

ρ Half-life x0 = xT Trading in (0, T ) Continuous
log 2

ρ
[in number of shares] [in number of shares] trading

0.001 693 days 49,975 50 0.05%
0.5 1.39 days 40,000 20,000 20%
1 270 min 33,333 33,334 33%
2 135 min 25,000 50,000 50%
5 54 min 14,286 71,428 71%
20 13.5 min 4,545 90,910 91%
50 5.4 min 1,923 96,154 96%
1000 0.3 min 100 99,800 99.8%

Table 1: Optimal trading strategy in continuous time for different ρ and half-lives ϑ respectively
(e−ρϑ = 1

2
). The risk aversion coefficient is a = 0. The parameter choice is given in Appendix A.1.

The associated optimal trading strategy is given by

x0 = X0
κf ′(0) + aσ2

κρf(0) + aσ2
and xT = XT = X0 − x0 −

∫ T

0

µudu,

µt = x0κ
ρg(t) − g′(t)

1 + κg(t)
exp(−

∫ t

0

κg′(u) + ρ

1 + κg(u)
du) for t ∈ (0, T ).

The following coefficients and functions were used:

αt =
κf(t) − λ

2
, βt = f(t), γt =

f(t) − 1

2κ
,

f(t) =
v − aσ2

κρ
+

[
(
κρ

2v
− κρ

v − aσ2 − κρ
) exp(

2ρv(T − t)

2κρ + aσ2
) − κρ

2v

]−1

,

v =
√

a2σ4 + 2aσ2κρ,

g(t) =
ρf(t) − f ′(t)

κf ′(t) + aσ2
.

According to this, Proposition 13 is a special case (a = 0) of the proposition above.
The proof of it can be found in Section 4.2, which is a revised version of the one to be
found in [20]. We first want to explain the results given in Proposition 13 and 15.

4.1 Interpretation of Proposition 13 and 15

Analogously to the discrete time case, the optimal strategy given in Proposition 13
comprises two equally sized discrete trades at 0 and T and a constant allocation of the
remaining shares on the time interval (0, T ). The buying intensity is constant.

It is notable that the optimal trading strategy from Proposition 13 only depends on
the parameters X0, ρ and T . Since the permanent impact is modelled linearly with
constant λ, its influence is the same for all strategies. Therefore, λ is indeed relevant
in order to determine the optimal cost, but it does not affect the optimal strategy.
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4. Optimal trading strategy in continuous time

According to Proposition 13, the proportion of the continuous trading in comparison
to the total trade is ∫ T

0
µtdt

X0

=
ρT

ρT + 2
.

For the unrealistic case ρ → 0 we only have the two discrete trades at the boundaries
of the considered time interval [0, T ] and for ρ → ∞ there is only continuous trading.
This observation is illustrated in Table 1. The bigger ρ or T are chosen, the smaller are
x0, xT and the expected cost C0. This is intuitively clear: Due to a higher resiliency ρ,
x0 can be reduced and the stronger flow of new limit orders can be used by the con-
tinuous trading to an increasing degree. For large T we can likewise profit from the
longer flow of new limit orders by increasing the continuous trading.

In the case where the investor has a risk aversion a 6= 0, we get from Proposition 15
that the larger a or σ are, the more trading should be shifted forward in time. Hence,
x0 > xT and the buying intensity µt is not constant anymore but rather it decreases.
This is illustrated in Figure 11 which is in line with Figure 10 for big N .

0.2 0.4 0.6 0.8 1

20000

40000

60000

80000

100000

t [in T]

X [in number of shares]t

Figure 11: Optimal trading strategies for different risk aversion coefficients a = 0, a = 0.1, a = 0.25
and a = 0.5 (from top to bottom). The volatility has been set to σ = 0.025 and the resiliency
parameter is ρ = 20. The remaining parameters are selected as in the list in Appendix A.1.

4.2 Proof of Proposition 15 and particularly Proposition 13

Let us now turn to the proof of Proposition 15. As a short recap, we are interested in
the best ask price explained in (24) or specifically in the term

C̃Θ
t =

∫ T

t

AΘ
u µudu +

∑

u∈T ,u≥t

[
AΘ

u +
1

2q
xu

]
xu,

in order to solve the optimisation problem

Ct = min
Θ

{
E

[
C̃Θ

t |Ft

]
+

1

2
a Var

(
C̃Θ

t |Ft

)}
. (28)
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4. Optimal trading strategy in continuous time

Thereby the following lemma holds for the variance of C̃Θ
t , which we will use later on.

Lemma 16. (Variance in continuous time) The deterministic, left-continuous, de-
creasing and positive strategies (Xu)u∈[t,T ] with xT = XT that are considered by us,
feature the following variance:

Var
(
C̃Θ

t |Ft

)
=

∫ T

t

σ2X2
udu.

Proof: In Lemma 8 we have already proved the claim in discrete time. Since we only
consider deterministic strategies X that are decreasing on the closed interval [0, T ], the
set of the points of discontinuity of X is a null set. Thus, X is Riemann-integrable and
τ → 0 gives the desired term

∫ T

0
σ2X2

t dt.

An alternative way to prove the lemma is to calculate the variance directly by apply-
ing the multidimensional Itô formula for jump processes (Oksendal and Sulem [21],
Theorem 1.16) or more exactly by using integration by parts to compute

ST XT − S0X0 =

∫ T

0

XudSu −
∫ T

0

Suµudu −
∑

u∈T

u<T

Suxu.

Therefore, we may write

Var
(
C̃Θ

0

)
= Var

(∫ T

0

Suµudu +
∑

u∈T
Suxu

)
= Var

(∫ T

0

XudSu

)
(29)

= σ2Var

(∫ T

0

XudWu

)
= σ2

∫ T

0

X2
udu.

Thereby dSt = σdWt was used in the third step of (29). In the last step we applied
Theorem 4.4.9 from Shreve [22], which states that the Itô integral I(t) =

∫ t

0
b(u)dWu

is normally distributed with expectation zero and variance
∫ t

0
b2(u)du for deterministic

functions b.

Let us now define

J
(
Xt, Dt, St, t, X[t,T ]

)
:= E

[
C̃Θ

t |Ft

]
+

1

2
a Var

(
C̃Θ

t |Ft

)
.

Then we obtain the following form of the optimisation problem (28):

C (Xt, Dt, St, t) = min
Θ

J
(
Xt, Dt, St, t, X[t,T ]

)
. (30)

It has been highlighted here that the process C, which we want to determine, depends
on (Xt, Dt, St, t).

For an arbitrary feasible strategy X[0,T ] and an arbitrary point in time t̂ ∈ [0, T ] we
can define the composite strategy X[0,t̂) + X∗

[t̂,T ]
: Until time t̂ we buy shares as given

by the arbitrary strategy and it is acted according to the optimal strategy afterwards
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4. Optimal trading strategy in continuous time

where X∗
t̂

= Xt̂ due to the left-continuity of the X-processes.

We thus have to determine C such that the following two conditions hold:

J
(
X0, D0, S0, 0, X[0,t̂) + X∗

[t̂,T ]

)
≥ C(X0, D0, S0, 0) for all t̂, X[0,t̂) (31)

J
(
X0, D0, S0, 0, X

∗
[0,t̂)

+ X∗
[t̂,T ]

)
= C (X0, D0, S0, 0) for all t̂. (32)

Let us therefore have a closer look at the connection between the terms J and C in
the following lemma.

Lemma 17 (J and C). Let us assume that the function C is sufficiently regular or
more precisely C(x, d, s, t) ∈ C2,1(R3 × [0, T ]; R). Then

J
(
X0, D0, S0, 0, X[0,t̂) + X∗

[t̂,T ]

)
= C (X0, D0, S0, 0)

+ E

[∫ t̂

0

(
Su +

z

2
+ λ (X0 − Xu) + Du − CX + κCD

)
µudu

]

+ E

[∫ t̂

0

(
Ct − ρDuCD +

1

2
σ2CSS +

1

2
aσ2X2

u

)
du

]

+ E




∑

u∈T ,u<t̂

(
∆C +

(
Su +

z

2
+ λ (X0 − Xu) + Du +

1

2q
xu

)
xu

)



=: C (X0, D0, S0, 0) + I1 + I2 + I3,

where ∆C(Xu, Du, Su, u) := C(Xu − xu, Du + κxu, Su, u) − C(Xu, Du, Su, u) and CX ,
CD and Ct denote the first derivatives of the function C with respect to the processes
X, D and the time. Analogously CSS is the second derivative of C with respect to S.

Proof: We want to compute the function J of the composite strategy. To do this, we
add the cost arising from the arbitrary strategy until t̂ and the cost resulting from the
optimal strategy from t̂ onwards:

J
(
X0, D0, S0, 0, X[0,t̂) + X∗

[t̂,T ]

)
= (33)

E

[∫ t̂

0

[(
Su +

z

2

)
+ λ (X0 − Xu) + Du

]
µudu

]
+

E



∑

u∈T ,u<t̂

[(
Su +

z

2

)
+ λ (X0 − Xu) + Du +

1

2q
xu

]
xu


+

1

2
a

∫ t̂

0

σ2X2
udu + E

[
C(Xt̂, Dt̂, St̂, t̂)

]
.

We used Lemma 16 for the computation of the variance.
We now want to apply the Itô formula to the function C(Xt, Dt, St, t). In doing so,
we have to respect that the process X has jumps. On account of this we apply the
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4. Optimal trading strategy in continuous time

Itô formula in the form of [21], Theorem 1.16 and therefore, need the regularity of C

postulated in Lemma 17.

As it emanates from Definition 12 and (25), we have the following dynamic for X, D

and S respectively:

Xt − X0 = −
∫ t

0

µudu −
∑

u∈T ,u<t

xu

Dt − D0 =

∫ t

0

(−ρDu + κµu) du + κ
∑

u∈T ,u<t

xu

St − S0 = σWt.

Hence the Itô formula for jump processes tells us

C (Xt, Dt, St, t) − C (X0, D0, S0, 0) = (34)
∫ t

0

Ctdu −
∫ t

0

µuCXdu +

∫ t

0

CD (−ρDu + κµu) du +

∫ t

0

CSσdWu +
1

2
σ2

∫ t

0

CSSdu +
∑

u∈T ,u<t

∆C.

There are no CXX or CDD terms appearing in (34), since X and therefore D as well
are deterministic.
The term (34) can now be plugged into (33) to finally get

J
(
X0, D0, S0, 0, X[0,t̂) + X∗

[t̂,T ]

)
= C (X0, D0, S0, 0)

+ E

[∫ t̂

0

(
Su +

z

2
+ λ (X0 − Xu) + Du − CX + κCD

)
µudu

]

+ E

[∫ t̂

0

(
Ct − ρDuCD +

1

2
σ2CSS +

1

2
aσ2X2

u

)
du

]

+ E




∑

u∈T ,u<t̂

(
∆C +

(
Su +

z

2
+ λ (X0 − Xu) + Du +

1

2q
xu

)
xu

)

 .

The remaining proof is organised as follows:
In Step I we construct the optimal strategy X∗

[0,T ] heuristically by using Lemma 17 and

the conditions (31) and (32). In Step II we verify the optimal strategy we obtained in
Step I and finally analyse it in detail in Step III.

Step I: Heuristic derivation of the optimal strategy
We make the following approach for the optimal cost, which suggests itself from the
discrete time case.

C (Xt, Dt, St, t) =
(
St +

z

2

)
Xt + λX0Xt + αtX

2
t + βtXtDt + γtD

2
t
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4. Optimal trading strategy in continuous time

We want to specify α, β and γ so that the conditions (31) and (32) are satisfied.
Thus we have, according to Lemma 17, to make sure that I1 + I2 + I3 ≥ 0 for every
arbitrary strategy X[0,t̂) and I1 + I2 + I3 = 0 if the arbitrary strategy is the optimal
one. Fortunately the term I3 does not make any difficulties, since it is always positive
as one understands as follows:

−∆C = C (Xu, Du, Su, u) − C (Xu − xu, Du + κxu, Su, u) (35)

≤
(

Su +
z

2
+ λ (X0 − Xu) + Du +

1

2q
xu

)
xu,

where the last inequality is an equality in the case that X∗
[u,T ] has a jump in u.

Therefore, it is sufficient to consider the terms I1 and I2 in the following. Defining

M1 := St +
z

2
+ λ (X0 − Xt) + Dt − CX + κCD and

M2 := Ct − ρDtCD +
1

2
σ2CSS +

1

2
aσ2X2

t ,

we have

M1 = St +
z

2
+ λ (X0 − Xt) + Dt

−
(
St +

z

2
+ λX0 + 2αtXt + βtDt

)
+ κ (βtXt + 2γtDt)

= (−2αt − λ + κβt) Xt + (1 − βt + 2κγt) Dt.

That is M1 is equal to zero when we set βt = f(t), αt = κf(t)−λ

2
and γt = f(t)−1

2κ
for a

function f that we still have to choose. Using this result to determine M2 we get

M2 =
1

2

[
κf ′(t) + aσ2

]
X2

t + [f ′(t) − ρf(t)] XtDt +
1

2κ
[f ′(t) + 2ρ − 2ρf(t)] D2

t .

It is now our intention to specify f such that M2 is always non-negative and equals
zero for the optimal strategy. Hence we minimise M2 in terms of Xt and we get the
following candidate for the optimal strategy X∗

[0,T ]

dM2

dXt

=
[
κf ′(t) + aσ2

]
Xt + [f ′(t) − ρf(t)] Dt

!
= 0 ⇔

X∗
t =

− (f ′(t) − ρf(t))

κf ′(t) + aσ2
Dt. (36)

We want that X∗ plugged into M2 gives zero. As an easy calculation shows, this will
be the case if f satisfies the following Riccati differential equation

f ′(t)
(
2κρ + aσ2

)
− κρ2f 2(t) − 2aσ2ρf(t) + 2aσ2ρ = 0.

Since C(XT , DT , ST , T ) = [
(
ST + z

2

)
+λ(X0−XT )+DT + 1

2q
XT ]XT we have to respect

the terminal condition f(T ) = 1. The function

f(t) =
v − aσ2

κρ
+

[
(
κρ

2v
− κρ

v − aσ2 − κρ
)e

2ρv(T−t)

2κρ+aσ2 − κρ

2v

]−1
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4. Optimal trading strategy in continuous time

with v :=
√

a2σ4 + 2aσ2κρ solves the considered differential equation. As stated in
Proposition 13, we have lima→0 f(t) = 2

ρ(T−t)+2
, since

lim
a→0

[
(
κρ

2v
− κρ

v − aσ2 − κρ
)e

2ρv(T−t)

2κρ+aσ2 − κρ

2v

]
=

lim
a→0

[
1

2
ρ
κ

v
(e

2ρv(T−t)

2κρ+aσ2 − 1) + 1

]
=

1

2
ρ(T − t) + 1.

Step II: Verification of the heuristic derivation
Let us first check that the function C(x, d, s, t) = (s+ z

2
)x+λX0x+[αtx

2 +βtxd+γtd
2]

with α, β and γ from Step I, as given in Proposition 13 and 15 respectively, is sufficiently
regular in order to justify the use of the Itô formula in Lemma 17 ex post. In other
words, C has to be continuous differentiable in t and in addition two times continuous
differentiable in all other three components. Hence, we will have to check if α, β and
γ are continuous differentiable.
In the situation of Proposition 13 we have

α′
t =

ρκ

[ρ(T − t) + 2]2
, β ′

t =
2ρ

[ρ(T − t) + 2]2
and γ′

t =
ρ

κ [ρ(T − t) + 2]2
.

That is α, β and γ are continuous differentiable, since ρ(T − t) + 2 = 0 if and only if
t = T + 2

ρ
> T .

In the situation of Proposition 15 we obtain

α′
t =

1

2
κf ′(t), β ′

t = f ′(t) and γ′
t =

1

2κ
f ′(t).

The Riccati differential equation tells us

f ′(t) =
1

2κρ + aσ2

(
κρ2f 2(t) + 2aσ2ρ(f(t) − 1)

)

and consequently it is only left to consider the continuity of the function f in Propo-
sition 15. We know that
(

κρ

2v
− κρ

v − aσ2 − κρ

)
exp

(
2ρv(T − t∗)

2κρ + aσ2

)
− κρ

2v
=: c1 exp

(
2ρv(T − t∗)

2κρ + aσ2

)
− c2 = 0

if and only if t∗ = T − ln(
c2
c1

)(2κρ+aσ2)

2ρv
. That is, t∗ > T if c2

c1
< 1. Due to

c2

c1
=

v − aσ2 − κρ

−v − aσ2 − κρ
<

κρ −√
κρ

κρ +
√

κρ + 2aσ2
,

f is continuous, as desired, if κρ > a2σ4. This inequality will hold if the parameters
are reasonably chosen.

Let us now verify again that our C, in fact, satisfies the conditions (31) and (32). As
just explained, C is sufficiently regular and Lemma 17 can be applied. Through our
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4. Optimal trading strategy in continuous time

choice of α, β and γ, M1 and therefore I1 are equal to zero. Furthermore, it can be
recalculated that

d2M2

dX2
t

= κf ′(t) + aσ2 > 0.

Hence, M2 really has a minimum in Xt = g(t)Dt and f has been chosen, such that
M2 is zero for this X. Therefore, I2 is zero for the optimal strategy and positive for
all others. The same holds for I3 as mentioned in Step I. Consequently C satisfies the
optimality conditions (31) and (32).

Step III: Analysis of the optimal strategy
In the last step of this proof we want to analyse the optimal strategy (36) in more detail.

At first we consider the strategy for a = 0 where we can write

Xt =
ρf(t) − f ′(t)

κf ′(t)
Dt =

1

κ
Dt

(
ρf(t)

f ′(t)
− 1

)

=
1

κ
Dt(

2ρ

ρ(T − t) + 2

[ρ(T − t) + 2]2

2ρ
− 1) =

ρ(T − t) + 1

κ
Dt. (37)

Therefore, we get for the shares to be bought at time t = 0 as desired

X0 − x0 = X0+ =
ρT + 1

κ
D0+ =

ρT + 1

κ
κx0 ⇔ x0 =

X0

ρT + 2
.

Let us now determine the buying intensity. By using (37), the product rule and

dDt = −ρDtdt + κµtdt, (38)

we get

dXt = −ρ

κ
Dtdt +

ρ(T − t) + 1

κ
(κµt − ρDt)dt.

Setting dXt = −µtdt, we can derive

µt =
ρ

κ
Dt.

According to (38) this means
dDt = 0.

That implies that, analogously to the discrete time case, the deviation between the
intrinsic and the actual best ask price is constant and equal to x0κ = κX0

ρT+2
for all

t ∈ (0, T ). This insight leads to

µt =
ρ

κ

κX0

ρT + 2
=

ρX0

ρT + 2
.

Because of Dt being constant, Xt is linear in t on (0, T ) according to (38). Except for
t = 0 and t = T , there are no further discrete trades. For the shares to be bought in
T we readily conclude

X0 =
X0

ρT + 2
+

ρX0

ρT + 2
T + xT ⇔ xT =

X0

ρT + 2
.
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4. Optimal trading strategy in continuous time

In the end, the optimal strategy for a 6= 0 remains to be considered. According to (36)
we have

Xt = g(t)Dt with g(t) :=
ρf(t) − f ′(t)

κf ′(t) + aσ2
.

One can check that g is continuous in case of κρ > a2σ4 (analogously to the continuity
of f in Step II). For x0 we have the following relation

X0 − x0 = g(0+)D0+ ⇔ x0 = X0
κf ′(0) + aσ2

κρf(0) + aσ2
.

Analogously to the case a = 0, one obtains by using the product rule

µt =
ρg(t) − g′(t)

1 + κg(t)
Dt.

We have Dt = κx0 exp(−
∫ t

0
κg′(u)+ρ

1+κg(u)
du), since D follows the dynamic

D0+ = κx0 and

dDt = κµtdt − ρDtdt =

(
κ
ρg(t) − g′(t)

1 + κg(t)
− ρ

)
Dtdt = −κg′(t) + ρ

1 + κg(t)
Dtdt.

This proves Proposition 13 and 15.

Remark 18. (Time-consistency of the optimal strategy for a = 0)
Here we want to examine if the optimal strategy obtained in Proposition 13 and 15 for
risk aversion a = 0 is time-consistent. This will be relevant in Chapter 7 when we
examine call auctions.
Time-consistency means that the optimisation in an arbitrary point in time t̂ ∈ (0, T )
will not change the optimal strategy calculated in t = 0 if all parameters stay the same.
To do so, we assume that an arbitrary strategy is used until t̂ and examine how the
optimal strategy from t̂ onward looks like. This means that we determine the size of
the discrete trade x̃t̂ in t̂. In Step III of the proof of Proposition 15 we have seen that

the optimal strategy is given by Xt = ρ(T−t)+1
κ

Dt. Therefore one obtains:

Xt̂ − x̃t̂ = Xt̂+ =
ρ(T − t̂) + 1

κ
Dt̂+ =

ρ(T − t̂) + 1

κ
(Dt̂ + κx̃t̂)

⇔ x̃t̂ =
1

ρ(T − t̂) + 2

(
Xt̂ −

ρ(T − t̂) + 1

κ
Dt̂

)
. (39)

If one buys optimally until t̂, then

Xt̂ = X0 − x0 −
∫ t̂

0

µtdt = X0
ρ(T − t̂) + 1

ρT + 2

and because of dDt = 0 we have Dt̂ = κx0 = κ X0

ρT+2
. Consequently, we get x̃t̂ = 0.

Therefore, the optimal strategy is time-consistent, since the buying intensity stays
constant from t̂ onward, too:

µ̃t =
ρ

κ
Dt =

ρX0

ρT + 2
.
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4. Optimal trading strategy in continuous time

It is interesting that we can even use (39) to compute x̃t̂, when arbitrary Xt̂ and Dt̂

are given. E.g. buying arbitrary y ∈ N shares at t = 0 and not doing any other trades
until t̂, we receive that it is optimal to purchase

x̃ =
1

ρ(T − t̂) + 2
(X0 − y[1 + (ρ(T − t̂) + 1)e−ρt̂]).

shares at t̂. Corresponding to intuition, this term will become negative if y is especially
large and t̂ quite small. It makes also sense in case of having y = 0. Besides it is
remarkable that D̃t = κx, µ̃t = ρx for t ∈ (t̂, T ] and x̃T = x where

x := ye−ρt̂ + x̃t̂.

Incidentally, an analogous result will hold if there are only discrete trades xi in ti < t̂

until t̂.

4.3 Comparison with the simplest trading strategy

At the end of this chapter we compare the cost of the trading strategy obtained in
Proposition 13 with the strategy which we call the simple Almgren and Chriss strategy
with x0 = xT = 0 and buying intensity µ∗ = X0

T
. In case of this strategy, we have the

following expected cost when we assume a best ask price as explained in (24):

C∗
0 = E

[∫ T

0

A∗
t µ

∗dt

]
= E

[∫ T

0

[(
St +

z

2

)
+ λX0

t

T
+ D∗

t

]
X0

T
dt

]
.

Thereby D∗ follows the dynamic dD∗
t = (κµ∗ − ρD∗

t )dt and consequently we have

D∗
t =

κX0

ρT

(
1 − e−ρt

)
.

The above formula simplifies to

C∗
0 =

(
S0 +

z

2

)
X0 +

(
λ

2
+

ρT −
(
1 − e−ρT

)

(ρT )2
κ

)
X2

0 .

In comparison to

C0 =
(
S0 +

z

2

)
X0 + (λ + α0) X2

0 =
(
S0 +

z

2

)
X0 +

(
λ

2
+

κ

ρT + 2

)
X2

0

from Proposition 13, this gives an always positive deviation between C∗
0 and C0 of

C∗
0 − C0 =

2ρT −
(
1 − e−ρT

)
(ρT + 2)

(ρT )2(ρT + 2)
κX2

0 .

Comparing this cost difference C∗
0 − C0 with the total liquidity cost of the simple

Almgren and Chriss strategy amounting to C∗
0 −

(
S0 + z

2

)
X0, yields the following net

deviation:

∆ :=
C∗

0 − C0

C∗
0 −

(
S0 + z

2

)
X0

.
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ρ Half-life λ = 1
2q

λ = 1
10q

λ = 1
50q

λ = 0

0.001 693 days 0.01% 0.01% 0.02% 0.02%
0.5 1.39 days 2.82% 4.97% 5.86% 6.13%
1 270 min 3.98% 7.38% 8.91% 9.39%
2 135 min 4.32% 8.81% 11.14% 11.92%
5 54 min 2.64% 6.69% 9.66% 10.86%
20 13.5 min 0.37% 1.39% 3.03% 4.31%
50 5.4 min 0.07% 0.31% 0.93% 1.88%
1000 0.3 min 0.00% 0.00% 0.00% 0.10%

Table 2: Comparison of the optimal and the simple Almgren and Chriss strategy. Listed is ∆ in
percent for the different values of ρ and λ. The other parameters are chosen as usual.

Table 2 contains some sampled data for ∆. Setting e.g. X0 = 100,000 shares,
λ = κ = 1

2q
with q = 5,000 shares and T = 1 day, then C0 −

(
S0 + z

2

)
X0 lies in

the dimension of 500,000 to 1 million Euro depending on the choice of ρ. Hence the
difference to the simple Almgren and Chriss strategy, depending on the parameter
choice, is not irrelevant but also not ground-breaking. A more detailed analysis of this
issue does not seem too important, considering in practice not only the minimisation
of the expectation of the cost but also risk has to be borne in mind.

We have seen in this chapter that the results achieved in Section 3 can be perfectly
generalised to continuous trading time. Moreover, the optimal strategy for the risk-
neutral case is time-consistent and its expected cost has been compared to the simple
Almgren and Chriss strategy.
So far this diploma thesis was primarily a repetition of the work of Obizhaeva and
Wang [20], but we improved and extended the representation as well as the results. In
contrast, the material provided below represents new results that can not be found in
the literature as of yet.
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5 Time dependent parameters

In this chapter we start to discuss possible extensions of the LOB model. We will
generalise it by replacing constant parameters by deterministic functions. As stated in
the Obizhaeva and Wang paper [20], it is for instance possible to model the resiliency ρ

as being time dependent, instead of a constant. This seems reasonable facing the
U-shaped pattern during the trading day of the spread, the price volatility and the
trading volume observed in a lot of market places (see e.g. the paper of Admati and
Pfleiderer [1] for details). We will shortly examine this aspect in Subsection 5.2.
In the next subsection, we similarly want to take the market depth q as being time
dependent. This might for example be useful when modelling the closing of the New
York Stock Exchange by a peak of the market depth, since the traded volume is higher
at this time.

5.1 Intraday curves of the market depth

We consider one trading day with discrete trading times (tn)n=0,...,N and distance

τ = tn+1 − tn =
1

N
.

Instead of assuming a constant market depth q during the whole day, we allow q to be
time dependent. This results in a given positive, deterministic sequence (qn)n=0,...,N .
For example, the market depth might follow a U-shaped pattern during the trading day
just as the traded volume. We assume that the ratio of permanent to total impact is a
constant λ̂ ∈ [0, 1] and hence the ratio of temporary to total impact is κ̂ := 1− λ̂. This

indicates that the trade x0 causes a permanent price impact of λ̂
q0

x0 and a temporary

price impact of κ̂
q0

x0. Therefore, our permanent price impact at time t can not be

determined by λ(X0 −Xt) for a constant λ anymore. We need to invent a new process
Dp which represents the permanent impact. Its dynamic is similar to the temporary
impact, which we will call Dt in the following.

D
p
0 = 0 and D

p
tn

= D
p
tn−1

+
λ̂

qn−1

xn−1 for n = 1, ..., N

Dt
0 = 0 and Dt

tn
=

(
Dt

tn−1
+

κ̂

qn−1

xn−1

)
e−ρτ for n = 1, ..., N

Accordingly the average price per share at time tn is

P tn =
(
Stn +

z

2

)
+ D

p
tn

+ Dt
tn

+
xn

2qn

.

With these assumptions we acquire the following result for the optimal strategy whose
proof is again a straight forward backward induction as in Lemma 4.

Corollary 19. (Optimal trading strategy for time dependent q)
The expected cost under the optimal strategy is

Ctn =
(
Stn +

z

2

)
Xtn + XtnD

p
tn

+
[
αnX

2
tn

+ βnXtnDt
tn

+ γn(Dt
tn

)2
]
.

37



5. Time dependent parameters

The associated optimal strategy is given by xN = XtN and

xn =
1

2
δn+1

[
εn+1Xtn − φn+1D

t
tn

]
for n = 0, ..., N − 1,

where we used the following recursive sequences

αN =
1

2qN

and αn = αn+1 −
1

4
δn+1ε

2
n+1

βN = 1 and βn = βn+1e
−ρτ +

1

2
δn+1εn+1φn+1

γN = 0 and γn = γn+1e
−2ρτ − 1

4
δn+1φ

2
n+1

δn =

[
1

2qn−1

− λ̂

qn−1

+ αn − κ̂

qn−1

e−ρτβn + (
κ̂

qn−1

)2e−2ρτγn

]−1

εn = 2αn − λ̂

qn−1
− κ̂

qn−1
e−ρτβn

φn = 1 − e−ρτβn + 2
κ̂

qn−1

e−2ρτγn.

Figure 12: Optimal strategy with the associated permanent and temporary impact for q having the
shape of a parabola with q = 4,900 and q = 5,100. We have chosen X0 = 100,000 shares, ρ = 20,

λ̂ = κ̂ = 1

2
and considered a period of d = 5 days and N = 49 trading times per day.

Intuitively one might expect Dp to appear in the optimal xn, but surprisingly the
structure of this corollary is equivalent to that in Lemma 4. We only incorporate the
fact that λ and κ are no constants anymore.
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Calculating backwards the first entries of the sequences δn to φn, one recognizes that
they depend non-trivially on qn−1, ..., qN . This means that every xn of the optimal
strategy depends on q0, ..., qN .
The corollary can easily be generalised to a trading horizon of several days d ∈ IN with
trading times (ti,j) i=0,...,N

j=1,...,d
, each day having the same developing of the market depth

(qn)n=0,...,N . Taking explicit values for qn, we can calculate the optimal strategy.

Example 20. (Exemplary choices for the market depth) Take q, q ∈ IR>0 with q > q.

1. Straight line qn = (q − q)nτ + q

2. Parabola qn = 4(q − q)(nτ − (nτ)2) + q

3. Cosine qn = 1
2

[
(q − q) cos(2πnτ) + q + q

]

4. Randomly qn = q+(q−q)rn for independently and uniformly distributed random
numbers rn ∈ [0, 1].

The correct model for the deterministic market depth (qn) should be chosen according
to the market place. If we usually experience a U-shaped pattern for the market depth,
a parabola as in 2., with q shares of market depth at the boundaries of the day and
q shares of market depth in the middle of the day will be reasonable. In a foreign
exchange market where according to [12] trading occurs 24 hours a day and market
depth peaks in the middle of the day, a cosine as in 3. might be befitting.

Calculating the optimal strategy for different choices of q, one observes xn moving in
the same direction as qn. This tendency is displayed in Figure 12. Moreover, it is
remarkable that the temporary impact Dt

n under the optimal strategy accompanies qn

as well. Note that it is not constant anymore! The permanent impact grows nearly
linearly. Unfortunately, the parameters ρ etc. have to be chosen carefully. Otherwise
negative values for some xn can occur.

If one assumes the market depth q to be stochastic, e.g. a mean reverting stochastic
process, instead of only deterministic, the dynamic programming method cannot be
used to find the optimal strategy.

5.2 Intraday curves of the resiliency

In the following, we will use a constant q if not stated otherwise. Again, we consider
one trading day with discrete trading times (tn)n=0,...,N and distance

τ = tn+1 − tn =
1

N + 1
.

Instead of taking a constant resiliency ρ of the LOB during the whole day, we allow ρ

being time dependent, i.e. we have a given deterministic, integrable function (ρt)t∈[0,T ].
We can take similar functions as in Example 20.
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Example 21. (Exemplary choices for the resiliency)
Take ρ, ρ ∈ IR>0 with ρ > ρ.

1. Straight line ρt =
(
ρ − ρ

)
t
T

+ ρ
∫ tn

tn−1
ρtdt = ρτ +

ρ−ρ

2T
τ 2(2n − 1)

2. Parabola ρt = 4
(
ρ − ρ

) (
t
T
− ( t

T
)2
)

+ ρ
∫ tn

tn−1
ρtdt = ρτ + 4

(
ρ − ρ

) [ t2n−t2n−1

2T
− t3n−t3n−1

3T 2

]

3. Cosine ρt = 1
2

[(
ρ − ρ

)
cos
(
2π t

T

)
+ ρ + ρ

]

∫ tn

tn−1
ρtdt = 1

2

[(
ρ + ρ

)
τ +

T(ρ−ρ)
2π

(
sin
(
2π tn

T

)
− sin

(
2π tn−1

T

))]

Taking a time dependent resiliency does not change the structure of the backward
induction as given in Lemma 4. We only have to replace ρτ by

∫ tn

tn−1
ρtdt in the induction

step and the dynamic of D becomes

Dtn =
(
Dtn−1 + κxn−1

)
exp(−

∫ tn

tn−1

ρtdt).

We get similar results as in Subsection 5.1: Apart from the two block trades at 0
and T , the optimal strategy has the same developing as the chosen resiliency. This is
illustrated in Figure 13. When we e.g. assume the resiliency to follow a cosine curve
during each day, the optimal strategy is a cosine as well. Moreover, the trading profile
of the optimal strategy does not change from day to day.

Figure 13: Optimal strategy for the resiliency ρt being a cosine with ρ = 25 and ρ = 50. We have

chosen X0 = 100,000 shares, q = 5,000, λ = 1

2q
and considered a period of d = 5 days and N = 49

trading times per day.

5.3 Time-dependent market depth, resiliency, spread
and volatility

To complete this section, we want to state that the optimal strategy cannot only be
adjusted for time-dependent market depth and resiliency as presented in the Subsec-
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tions 5.1 and 5.2, but the spread z and the volatility σ of the price process

St = S0 +

∫ t

0

σsdWs

can be assumed to follow a deterministic intraday curve as well. We suppose that we
are given (qn), (zn) for n = 0, ..., N and (ρt), (σt) for t ∈ [0, T ]. Our average price at
time tn is

P tn =
(
Stn +

zn

2

)
+ D

p
tn + Dt

tn
+

xn

2qn

,

where the permanent impact process has the dynamic

D
p
0 = 0, D

p
tn

= D
p
tn−1

+
λ̂

qn−1
xn−1

and the temporary impact behaves according to

Dt
0 = 0, Dt

tn
= (Dt

tn−1
+

κ̂

qn−1

xn−1) exp

(
−
∫ tn

tn−1

ρtdt

)
.

Our optimisation problem is

Ctn = min
{xn,...,xN∈IR|∑N

k=n xk=Xtn}

{
E

[
N∑

k=n

P tkxk

]
+

1

2
a Var

(
N∑

k=n

P tkxk

)}
.

Similar to Lemma 8 we can calculate the variance of our cost:

Var

(
N∑

k=n

P tkxk

)
=

N∑

k=n+1

Var
(
Stk − Stk−1

)
X2

tk
=

N∑

k=n+1

Var

(∫ tk

tk−1

σtdWt

)
X2

tk
=

N∑

k=n+1

(
X2

tk

∫ tk

tk−1

σ2
t dt

)
.

Incorporating all this into our established backward induction gives the following result.

Corollary 22. (Optimal trading strategy for time dependent q, ρ, z and σ)
The expected cost under the optimal strategy is

Ctn = StnXtn + XtnD
p
tn +

[
αnX2

tn
+ βnXtnDt

tn
+ γn(Dt

tn
)2 + ηnXtn + µnD

t
tn

+ ωn

]
.

The associated optimal strategy is given by xN = XtN and

xn =
1

2
δn+1

[
εn+1Xtn − φn+1D

t
tn
− ϕn+1

]
for n = 0, ..., N − 1,

where the used sequences can be found in Appendix A.2.

The bottom line is that we can replace the constant parameters in our model by time
dependent functions. But we have to be careful when we do so, because our optimal
strategy might be partly negative.
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6 Auctions–First approaches via volume time

So far we have only considered continuous trading and ignored the fact that periodic
call auctions or sometimes referred to as clearing house auctions can be found in
many market places. In this chapter, we therefore aim to present first ideas concerning
these auctions.

There are different designs of call auctions. In most market places, a morning and
evening call auction take place every trading day. Continuous trading is stopped for
a few minutes while bidding continues. Limit and market orders flow into the order
book without crossing of the matching orders. As a result, the sell and the buy side of
the order book may start overlapping.
At the end of this order collection phase, one price P ∗ per share is determined by an
algorithm such that the executable order volume is maximised. How this algorithm
looks like, will be discussed later in Chapter 8.
Depending on its limit price p, a limit order in the auction is executed or not–in the case
of a buy order it is executed at P ∗ if p ≥ P ∗ and vice versa for a sell order. Price-time
priority rules are used as during continuous trading. Orders that cannot be conducted
at the determined auction price P ∗ are transferred to the following continuous trading
phase or call auction respectively.
This basic knowledge about call auctions is sufficient to go through the next two chap-
ters.

Remark 23. Since exactly one price P ∗ is fixed, call auctions are sometimes referred
to as single-price auctions in comparison to the continuous trading which is sometimes
called double-price auction because both the best ask and bid price are stated.

Although an auction only takes five minutes physical time, it often constitutes more
than 5% of the daily volume in a stock. This fact already emphasises the importance of
call auctions. According to Kehr, Krahnen and Theissen, who investigate in [15] data
of stocks in the DAX index from 1996, more than 20% of daily trading of the Siemens
stock is carried out through auctions. This figure can even rise up to 50% in case of
less liquid stocks and is on average roughly 10% of daily volume for each auction.
Our time horizon T often spans more than one day. That is why they have to be taken
into account and cannot be disregarded as in most literature. To get a better insight
into the subject of auctions, we will shortly mention how they blend in the trading
of Frankfurt and London Stock Exchanges (FSE and LSE respectively), which are the
leading markets in Europe.

Example 24. The order driven trading systems at the LSE and FSE are called SETS
and Xetra respectively. Both have been operating since 1997. In case of the LSE,
dealer quotes are still used in parallel. In Table 3 an overview of the occurring auctions
is given. At the end of an auction, market order or price monitoring extensions may
take place. This is the case if market orders are left unexecuted or the potential auction
price is outside the price monitoring tolerance. On top of this, there is a 0 to 30 second
random end. The idea of this random end is to avoid last-minute manipulation of the
auction price.
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Auctions Morning2 Intraday Evening
Duration 10 min 2 min 5 min
SETS 7.50 a.m. none 4.30 p.m.
Xetra 8.50 a.m. 1 p.m. 5.30 p.m.

Table 3: Auctions in SETS and Xetra.

The algorithms that calculate the clearing price need less than 30 seconds. Execution
acknowledgments are sent to the appropriate market participants after the auction.
In addition to the morning, intraday and evening auctions, one can find Automatic
Execution Suspension periods of roughly five minutes duration. They occur during
continuous trading if the potential execution price breaches the price tolerance levels.
These breaks are called volatility breaks in the Xetra system and are handled similarly
to auctions.
The question arises which information of the auction the traders can see during the
calling phase. One extreme, which we will call blind auctions, are e.g. Chinese call
auctions where no information is disseminated at all except of the final clearing price.
The other extreme, so-called visible auctions, are e.g. auctions at the LSE where
the whole LOB, or more exactly the ten ticks smaller than the best bid and larger
than the best ask price, are publicly visible. In this sense the FSE is a hybrid: The
indicative price with its associated trading volume and imbalance is observable to the
market participants during the call phase, but not the individual orders. As the name
suggests, the indicative price is the price per share which would result in a maximum
tradeable volume if only the orders accumulated so far were incorporated.
According to Beltran-Lopez and Frey [4], the rational of closing the book during auc-
tions is not clear, since the lack of transparency may harm the dissemination of infor-
mation. The main argument is that by hiding the book, the exchange protects large
orders.

6.1 Blind auctions with Almgren and Chriss model

In the following subsection, we aim to introduce a very basic approach to auctions in
the simple Almgren and Chriss model from [3]. As a reminder, the model consists of a
linear permanent price impact and an only instantaneously existing linear temporary
impact. No delay effects are involved. Consequently the average price per share at
time tn is

P tn =
(
Stn +

z

2

)
+ λ

n∑

i=0

xi +
η

tn − tn−1
xn (40)

for constants λ, η ∈ IR>0.
We will now model one trading day with a morning and evening auction of the same
length. We do that by taking the volume time, instead of the physical time of the
auctions. This means that the auction length v is chosen corresponding to the portion
of daily trading volume. For simplicity, we norm the time axis by defining one time

2The morning auction includes orders from the post and pre-trading phase.
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unit as the time of continuous trading between the morning and evening auction of
one day. E.g. let us assume that one time unit is 6.5 hours and y > 0 is the average
trading volume measured in shares during this continuous trading phase of one day.
We refer to ya as the average number of shares traded on one auction. The idea is to
include the auctions in the setting of Almgren and Chriss by choosing their length as
v = ya

y
. In the extreme case, for instance, where on average the same number of shares

is traded during an auction and the continuous trading of one day, we would model v

as 6.5 hours of normal trading. The real time length of five minutes is not decisive.

For the time being, we assume that the considered auctions are totally blind. Therefore,
it does not matter how we phase our orders during the auction. Therefore, we only
optimise over x0, ..., xN ∈ IR, where x0 and xN are the number of shares to be put
on the morning and evening auction respectively and x1 to xN−1 are the trades to be
executed during continuous trading. The corresponding points in time are

t0 = v, tn = v + nτ for n = 1, ..., N − 1 and tN = 2v + 1,

where τ := 1
N−1

, v ∈ IR>0 is fixed and t−1 which appears in (41) is set to zero. The
same price behaviour as in (40) is presumed for the auction prices.

The following optimisation problem, which is matchable to (19) and (20), emerges
when the expectation of our cost are meant to be minimised

C0 =
(
S0 +

z

2

)
X0 +

λ

2
X2

0 (41)

+ min
{x0,...,xN∈IR|∑N

n=0 xn=X0}

{
λ

2

N∑

n=0

x2
n + η

N∑

n=0

x2
n

tn − tn−1

}
.

By defining c1 := λ
2

+ η

τ
and c2 := λ

2
+ η

v
we have to consider

min
{x0,...,xN∈IR|

∑N
n=0 xn=X0}

{
c1

N−1∑

n=1

x2
n + c2

(
x2

0 + x2
N

)
}

=

min
{x0,x1∈IR|x1=

X0−2x0
N−1 }

{
c1(N − 1)x2

1 + 2c2x
2
0

}
= min

x0∈IR
f(x0)

with f(x) := c1
(X0−2x)2

N−1
+ 2c2x

2. We know that the optimal xn are equal for n =
1, .., N − 1 because they occur quadratic in the sum to be minimised. Thus it is
sufficient to optimise with respect to one parameter3 which gives a minimum in

x0 = X0
c1

(N − 1)c2 + 2c1
and x1 = X0

c2

(N − 1)c2 + 2c1
.

In particular, the obtained optimal strategy is positive as desired and linear in X0.
Let us now turn to its interpretation in more detail: As shown in Figure 14, we are

3Incidentally, we will have to optimise over i ∈ IN in lieu of one parameter if we have i different
auction lengths v1, ..., vi ∈ IR>0.
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Figure 14: Optimal trading strategy when blind auctions of the volume time length v are included in
the Almgren and Chriss model.

meant to put x0 shares on each of the morning and evening auction and to allocate
the remaining shares equally over the normal trading day, i.e. x1 = ... = xN−1. In the
following, we assume that the number of trading times N is large in order to have a
small τ . This provokes that we have a comparatively lower temporary impact on the
auctions, since v > τ . Consequently x0 > x1, but choosing e.g. v = 2τ gives x0 < 2x1.
For a better understanding of the dependencies of x0 and x1 on the parameters λ, η,
τ and v, we define the ratio of the number of stocks traded during the auctions to the
total number of stocks as

R(λ, η, τ, v) :=
2x0

X0
=

λ + 2 η

τ
1
τ

(
λ
2

+ η

v

)
+ λ + 2 η

τ

∈ (0, 1).

Calculating the derivatives of R gives

∂

∂λ
R(λ, η, τ, v) = − η(v − τ)

vτ 2d(λ, η, τ, v)2
< 0

∂

∂η
R(λ, η, τ, v) =

λ(v − τ)

vτ 2d(λ, η, τ, v)2
> 0

∂

∂τ
R(λ, η, τ, v) =

λ(λv + 2η)

2vτ 2d(λ, η, τ, v)2
> 0

∂

∂v
R(λ, η, τ, v) =

η(λτ + 2η)

v2τ 2d(λ, η, τ, v)2
> 0

Thereby d(λ, η, τ, v) := 1
τ

(
λ
2

+ η

v

)
+ λ + 2 η

τ
denotes the denominator of the ratio R.

The signs of the above derivatives tell us that we are trading less on the auctions
when the permanent impact constant λ is increasing. We are trading more when the
temporary impact η, the length of the auctions v or the distance τ between two trading
times during the continuous trading increases.
We now want to see what happens when we choose the trading times during the
continuous trading [v, v + 1] being arbitrarily near to each other. Using τ = 1

N−1
the

limit N → ∞ gives

lim
N→∞

x0 = X0
1

2 + λ
2η

+ 1
v

<
1

2
X0 and lim

N→∞
x1 = 0.
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This limit of x0 is intuitive, since the number of traded shares on the auctions increases
as the auction length v increases or the ratio of the permanent to the temporary impact
λ
η

decreases.

The results can be generalised easily to K ∈ IN auctions of the same length instead
of two. They can be placed arbitrarily during the considered continuous trading time
normed as one time unit. In particular, several trading days can be modelled. Analo-
gously to the case with two auctions, one can compute that it is optimal to trade x0

shares on each of the K auctions and x1 shares at each trading time during continuous
trading with

x0 = X0
c1

(N + 1 − K)c2 + Kc1

N→∞−→ X0
1

K + λ
2η

+ 1
v

<
1

K
X0 and

x1 = X0
c2

(N + 1 − K)c2 + Kc1

N→∞−→ 0.

6.2 Blind auctions with Obizhaeva and Wang model

Now a similar approach as in Subsection 6.1 is presented to include blind auctions in the
model of Obizhaeva and Wang [20]. Again, we adjust our time discretisation by taking
into account the volume time of the considered auctions. The same price behaviour
as in [20] given explicitly in (43) is assumed. But in contrary to Subsection 6.1, we
want to allow the morning and evening auctions to have different lengths v1 and v2,
respectively. Actually, auctions often have different lengths. We did not allow this in
Subsection 6.1 because this would have complicated the optimisation.
Suppose we are considering an execution that occupies d ∈ N complete trading days
and we have N + 1 trading times per day. That is we look at the matrix of trading
times (ti,j) i=0,...,N

j=1,...,d
with the associated matrix of discrete trades

(xi,j) i=0,...,N
j=1,...,d

.

We want to interpret x0,j and xN,j as the number of shares to be bought on the opening
and the closing auctions respectively on the j-th day. According to this, x1,j and xN−1,j

are the first and the last trade during the continuous trading phase of the j-th day.
Since we model a blind auction, other market participants do not react on our trades
on the auctions. Therefore, we set

t0,j − tN,j−1 = v1, tN,j − tN−1,j = v2 and ti,j − ti−1,j = 1
N−1

for i = 1, ..., N − 1 (42)

which corresponds to trading at the end of the auction. That is in comparison to the
visible auctions in the subsequent Chapter 7, there is no resiliency effect for the auction
trade itself during the auction.

Let (ai,j) i=0,...,N
j=1,...,d

be a matrix. Then we denote with a′
i,j the successor of the entry ai,j:

a′
i,j =

{
a0,j+1 if i = N

ai+1,j otherwise
.
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Days: 1 2 3 4

x0 10.06 1.70 1.70 1.70
x1 2.00 2.00 2.00 2.00
x2 2.00 2.00 2.00 2.00
x3 2.00 2.00 2.00 2.00
x4 2.00 2.00 2.00 2.00
x5 2.00 2.00 2.00 2.00
x6 2.00 2.00 2.00 2.00
x7 2.00 2.00 2.00 2.00
x8 2.00 2.00 2.00 1.45
x9 1.70 1.70 1.70 2.20
x10 1.40 1.40 1.40 9.80

Table 4: Optimal strategy in discrete time for blind morning and evening auctions. We want to buy
X0 = 100,000 shares, consider d = 4 days and the number of discrete trades per day is N = 10.
The market depth is q = 5,000 shares, we set the permanent price impact parameter to λ = 1

2q
and

the resiliency coefficient to ρ = 2. The morning and evening auction have the same length with
v1 = v2 = 0.5

6.5
(meaning that an auction is modelled as 30 minutes in comparison to the 6.5 hours of

continuous trading during one day). The xi,j in the table are given in thousand shares.

For convenience we write the processes D, X, C, P and S as Di,j instead of Dti,j . With
these notations in mind we assume the following price per share behaviour:

P i,j = (Si,j +
z

2
) + λ (X0 − Xi,j) + Di,j +

xi,j

2q
, (43)

where we have as in [20] the following dynamic of the process D

D′
i,j = (Di,j + κxi,j) e−ρ(t′i,j−ti,j).

Now we can do exactly the same dynamic programming procedure as in Lemma 4 and
get identical results with the only difference being that the δ, ε and φ terms have a
e−ρv1 and e−ρv2 instead of e−ρτ in the recursion i = 0 and i = N respectively. This
follows from

D0,j = (DN,j−1 + κxN,j−1) e−ρv1 and

DN,j = (DN−1,j + κxN−1,j) e−ρv2 .

Taking explicit values for our model parameters, we can once again calculate our opti-
mal strategy as done in Table 4. In addition to the first trade x0,0 on the first trading
day and the last three trades xN−2,d to xN,d on the last day, our optimal strategy con-
sists of the following discrete trades:
We have equal xN−1,j for j = 1, ..., d − 1, equal xN,j for j = 1, ..., d − 1 and equal x0,j

for j = 2, ..., d. All other shares are spread evenly over the continuous trading phase.
If the morning and evening auctions have the same length (v1 = v2), the trades before
the evening auction and on the morning auction will be equal in their size, i.e.

xN−1,j = x0,j+1 for j = 1, ..., d − 1.
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Increasing the length of the morning (evening) auction v1 (v2) leads to an increase of
x0,j (xN−1,j) and xN,j . This can be explained with (16), since v1 appears in D0,j and
δ0,j and v2 appears in DN,j and δN,j .
Similar to the case without auctions, the process D is constant during the continuous
trading and for each auction phase [tN−1,j , t0,j+1] we have the following behaviour: The
discrete trade xN−1,j lifts the process D, which settles down during the evening auction
of length v2 to be lifted again by κxN,j because of the evening auction bid. Settling
down again during the morning auction with volume time v1, D rises to its original
level because of x0,j+1.

In this section it has been clarified what we mean by an auction. First ideas how to
incorporate blind auctions into the Almgren and Chriss as well as Obizhaeva and Wang
model using volume time for the auctions have been presented.
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7 Visible auctions with Obizhaeva and Wang model

In the following chapter we want to consider visible auctions. That means that other
market participants are able to react on our auction bids. Therefore, we model the
resiliency for these bids to start immediately during the auction.
The price impact is determined in exactly the same way as before. The auction price P ∗

per share is computed by adding the permanent and the temporary price impact to
S + z

2
. Suppose that tstart and tend ∈ [0, T ] are the beginning and the end of the

considered auction. That means tend − tstart = v1 or v2 depending on which auction
is looked at (morning or evening auction). As explained in Chapter 6, volume time is
used to model the auction lengths in order to account for the higher liquidity during
auctions. It should be emphasised here that bidding is allowed on [tstart, tend] and not
only at tend as in the last chapter with blind auctions. We have according to (3)

P ∗ = Atend
=
(
Stend

+
z

2

)
+ λ(X0 − Xtend

) + Dtend
. (44)

Since we use the same price determination as in the paper of Obizhaeva and Wang [20],
one would think that the optimal execution strategy stays the same. But obviously
the crucial difference is that the price for all bids during the auction [tstart, tend] is not
determined until the end of the calling phase. Bidding during the auction increase the
price for a discrete bid at tstart. Without auctions, earlier trades influenced the prices
of later trades and not vice versa. For this reason, we have to reconsider the optimal
execution strategy in the case with the described visible auctions. Questions that we
address in this chapter are:
Are there bids on (tstart, tend)? Where do we put discrete bids and trades? Do we still
buy evenly during the continuous trading phases?

7.1 Preparations

7.1.1 No order placement during auctions

In Chapter 6, other market participants did not react on our actions during the auction.
Consequently, we restricted our strategies to one bid per auction. But for visible
auctions, we have to ask ourselves how to allocate our bids during the calling phase.
To answer this question, we will show in the following simple lemma that it is optimal
in our setting to put all orders of the auction at the beginning of the calling phase as
a single block. There is no order placement during the rest of the time.
We only consider the auction itself. Suppose that its bidding times tn = tstart + nτ are
fixed, where τ = tend−tstart

N
and n = 0, ..., N . As usual, we say xn ≥ 0 is the number of

shares to be placed at time tn.

Lemma 25. If we want to buy a fixed number of shares x ∈ IR>0 during an auction,
then we will minimise our cost by choosing x0 = x and xn = 0 for n = 1, ..., N .

Proof: As indicated in (44), the auction price P ∗ is determined analogously to the
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case without auctions. That is

P ∗ (x0, ..., xN ) =
(
Stend

+
z

2

)
+ λ

(
X0 − Xtstart +

N∑

n=0

xn

)

+ Dtstarte
−ρ(tend−tstart) + κ

N∑

n=0

xne−ρ(tend−tn).

Consequently, we get the following optimisation problem

min
{x0,...,xn∈IR|

∑N
n=0 xn=x}

P ∗ (x0, ..., xN )x =
(
Stend

+
z

2

)
x + λx (X0 − Xtstart + x)

+xDtstarte
−ρ(tend−tstart) + κx min

{x0,...,xn∈IR|
∑N

n=0 xn=x}

N∑

n=0

xne
−ρ(tend−tn).

Obviously only the last term depends on x0, ..., xN and it is minimised by choosing
x0 = x and xn = 0 for n = 1, ..., N .

The lemma gives the following intuition: We have the same permanent impact in P ∗

no matter how we allocate the x shares during the auction, but the temporary impact
in P ∗ will get smaller if we bid as early as possible.

7.1.2 Using time consistency to handle one auction

In this subsection we want to give a first idea of how to trade optimally if visible auc-
tions in the above sense are involved. For this purpose, we consider the case where
we start trading with an opening auction of length v1 and there are no more auctions
afterwards until T . Our aim is to show that it is optimal to put a discrete bid x̃0 at the
beginning of the auction, a discrete trade x̃v1 directly after the auction and a discrete
trade x̃T at T . The remaining shares are purchased uniformly between the end of the
auction and T . In order to prove this proposition, we need the lemma given below.
It deals with the concept of time consistency, which we have already introduced in
Remark 18.

Definition 26. An optimal trading strategy (Xt)t∈[0,T ] is called time-consistent if re-
computing the static trajectory in an arbitrary t̂ ∈ (0, T ) leads to the same trajectory,
where the recomputation takes into account the temporary price impact Dt̂ already
accumulated and no new data is introduced.

In the following lemma, we show that the optimal strategy given in Proposition 13
and 15 for risk aversion a = 0 is time-consistent. The lemma itself has nothing to do
with auctions.

Lemma 27. The optimal strategy Xt = ρ(T−t)+1
κ

Dt from (37) with constant temporary
impact Dt ≡ κ X0

ρT+2
for t ∈ (0, T ) is time-consistent in terms of Definition 26.
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7. Visible auctions with Obizhaeva and Wang model

Proof: The proof is basically a recap of what was said in Remark 18.
Assume being at time t̂ such that we have already accumulated a temporary price
impact of D̃, and suppose there are X̃ shares still to be purchased until T . We now
wonder how to choose the discrete trade x̃t̂ in t̂ optimally. Because of Xt = ρ(T−t)+1

κ
Dt

we get

X̃ − x̃t̂ = Xt̂+ =
ρ(T − t̂) + 1

κ
Dt̂+ =

ρ(T − t̂) + 1

κ

(
D̃ + κx̃t̂

)

⇔ x̃t̂ =
1

ρ(T − t̂) + 2

(
X̃ − ρ(T − t̂) + 1

κ
D̃

)
. (45)

If we act optimally until time t̂, we will get

X̃ = X0 − x0 − t̂
ρX0

ρT + 2
= X0

ρ(T − t̂) + 1

ρT + 2

and D̃ = κ X0

ρT+2
. Fitting this into (45) gives x̃t̂ = 0. Thus, the optimal strategy is

time-consistent.

Figure 15: Optimal trajectory for one opening auction.

We can now apply Lemma 25 and 27 to obtain the result for one auction, which we
already stated at the beginning of the subsection:
Lemma 25 tells us to put a discrete trade, say x̃0, at the beginning of the morning
auction and there is no more bidding during the auction. Then we can use (45) for
t̂ = v1 to see that we should optimally buy

x̃v1 =
1

ρ(T − v1) + 2

(
X0 − x̃0 − [ρ(T − v1) + 1] x̃0e

−ρv1
)

shares at v1. Because of dDt = 0 for all t ∈ (v1, T ], we get a constant Dt = Dv1+ = κx

and µ̃t = ρ

κ
Dt = ρx for all t ∈ (v1, T ], where x is defined as

x := x̃0e
−ρv1 + x̃v1 .
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7. Visible auctions with Obizhaeva and Wang model

Finally there are

x̃T = XT =
1

κ
DT = x

shares left to be purchased at T as a discrete trade. A short test shows that

x̃0 + x̃v1 + (T − v1)µ̃t + x̃T

add up to X0 as desired. Notice that we have not determined the size of x̃0.
In the following we want to examine what happens if more than one auction is involved.
An interesting question will be if we still trade uniformly between the auctions such as
in Chapter 6.

7.2 Optimal strategy by backward induction

Applying auxiliary Lemma 25, we get the proposition below giving the optimal execu-
tion strategy in the case with several auctions when we consider discrete trading times.
Again the proof can be done by backward induction involving dynamic programming
techniques.
Suppose that we are given a purchase order whose execution should take d ∈ N days
and let us assume that we have N + 1 trading times per day. That is, we look again
at the matrix of trading times (ti,j) i=0,...,N

j=1,...,d
and the associated matrix of discrete trades

(xi,j) i=0,...,N
j=1,...,d

.

Since Lemma 25 tells us to place orders only at the beginning of an auction, we want
to interpret x0,j and xN,j as the number of shares to be bid at the beginning of the
j-th day’s opening and closing auction. According to this x1,j and xN−1,j are the first
and the last trade during the continuous trading phase of the j-th day. This leads to
the following time partition

t1,j − t0,j = v1, t0,j − tN,j−1 = v2 and ti,j − ti−1,j = 1
N−1

for i = 2, ..., N ,

which is slightly different from (42) since we are bidding at the beginning instead of
the end of the auctions.

We do not want to restrain trading to start at the beginning of the first day and to
stop at the end of the last day. The investor can choose the parameters

first and last ∈ {0, ..., N}

in advance of the execution. They represent the first trade on the first day and the
last trade on the last day, i.e. xi,1 = 0 for i = 0, ..., f irst − 1 and xi,d = 0 for
i = last + 1, ..., N as illustrated in Table 5. Thus, the time for buying the X0 shares is
given by T = tlast,d − tfirst,1.
We denote by P ∗

opening,j and P ∗
closing,j the auction price of the opening and closing auc-

tion of the j-th day and a′
i,j is again the successor of the matrix entry ai,j.
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7. Visible auctions with Obizhaeva and Wang model

Proposition 28. (Optimal trading strategy with visible auctions)
The optimal strategy that minimises the expected cost is

xi,j =
1

2
δ′i,j
[
ε′i,jXi,j − φ′

i,jDi,j

]

j = 1 i = first, ..., N

j = 2, .., d − 1 i = 0, ..., N

j = d i = 0, ..., last − 1

and xlast,d = Xlast,d. The expected cost for future trades under the optimal strategy is

Ci,j =
(
Si,j +

z

2

)
Xi,j + λX0Xi,j +

[
αi,jX

2
i,j + βi,jXi,jDi,j + γi,jD

2
i,j

]
,

where the coefficients α, β, γ, δ, ε and φ are determined as follows:

Initialisation:

αlast,d =





κe−ρv1 if last = 0

κe−ρv2 if last = N
1
2q

− λ otherwise

, βlast,d =





e−ρv1 if last = 0

e−ρv2 if last = N

1 otherwise

, γlast,d = 0

Backward recursion: (indices i, j left out for convenience)

α = α′ − 1
4
δ′(ε′)2, β = β ′e−ρ(t′−t) + 1

2
δ′ε′φ′, γ = γ′e−2ρ(t′−t) − 1

4
δ′(φ′)2

δ′ =






[
(κe−ρ(t′−t) + λ) + α′ − κβ ′e−ρ(t′−t) + κ2γ′e−2ρ(t′−t)

]−1
if δ′ = δ0,j or δ1,j[

1
2q

+ α′ − κβ ′e−ρ(t′−t) + κ2γ′e−2ρ(t′−t)
]−1

otherwise

ε′ = λ + 2α′ − κβ ′e−ρ(t′−t)

φ′ =

{
e−ρ(t′−t) − β ′e−ρ(t′−t) + κγ′e−2ρ(t′−t) if φ′ = φ0,j or φ1,j

1 − β ′e−ρ(t′−t) + κγ′e−2ρ(t′−t) otherwise

Proof: We proof the structure of C by backward induction analogously to Lemma 4.
That is we run backwards through the columns of the considered matrices. Firstly, we
deal with Clast,d by using case differentiation. In the case last = 0, we have with (44)

Clast,d = Xlast,dE
[
P ∗

opening,d|Ftlast,d

]

= Xlast,d

[
(Slast,d +

z

2
) + λX0 + (Dlast,d + κXlast,d) e−ρv1

]

=
(
Slast,d +

z

2

)
Xlast,d + λX0Xlast,d +

[
κe−ρv1X2

last,d + e−ρv1Xlast,dDlast,d

]
.
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7. Visible auctions with Obizhaeva and Wang model

We get the same term but with v2 instead of v1 in the case last = N .
For last = 1, ..., N − 1 the induction basis is analogue to Lemma 4:

Clast,d = Plast,dXlast,d

=
(
Slast,d +

z

2

)
Xlast,d + λX0Xlast,d +

[(
1

2q
− λ

)
X2

last,d + Xlast,dDlast,d

]
.

The inductive step can be seen by a case differentiation, too. We distinguish be-
tween the steps involving no auction and involving the opening or the closing auc-
tion. In the case where no auction is involved, we consider Ci,j for an arbitrary j

and i ∈ {1, ..., N − 1}. The dynamics are exactly the same as in the inductive step
of Lemma 4. Therefore, we only need to examine the dynamics of the morning and
evening auctions, where we have i = 0 and i = N , respectively. We start with the
morning auction:

C0,j = min
x0,j∈IR

{
x0,jE

[
P ∗

opening,j|Ft0,j

]
+ E

[
C1,j |Ft0,j

]}
. (46)

We can now put

E
[
P ∗

opening,j|Ft0,j

]
=
(
S0,j +

z

2

)
+ λ [(X0 − X0,j) + x0,j ] + (D0,j + κx0,j)e

−ρv1

into (46) and apply the induction hypothesis to C1,j where

X1,j = (X0,j − x0,j) and D1,j = (D0,j + κx0,j)e
−ρv1 .

The term we receive is quadratic in x0,j just as in the inductive step without auctions.
Differentiating with respect to x0,j gives a minimum in x0,j = 1

2
δ1,j [ε1,jX0,j − φ1,jD0,j]

where δ1,j , ε1,j and φ1,j are defined as stated in the recursion of Proposition 28.
Now we paste this x0,j into the term to be minimised, and after some calculation we
obtain the desired result

C0,j =
(
S0,j +

z

2

)
X0,j + λX0X0,j +

[
α0,jX

2
0,j + β0,jX0,jD0,j + γ0,jD

2
0,j

]
.

In the case of the evening auction we have

CN,j = min
xN,j∈IR

{
xN,jE

[
P ∗

closing,j|FtN,j

]
+ E

[
C0,j+1|FtN,j

]}
.

instead of (46), and everything goes analogously to the morning auction with v2 instead
of v1.

7.3 Interpretation of the optimal strategy

By implementing a small program with adequate software, the optimal xi,j out of
Proposition 28 can be calculated explicitly. Table 5 shows exemplary outputs of the
program. From the first row of the table, you can see that the number of shares to be
bid at the beginning of the morning auction x0,j is equal for j = 2, ..., d. The same is
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Output 1: Output 2: Output 3:
first = 6, last = 4 first = 0, last = 10 first = 4, last = 10

1 2 3 4 1 2 3 4 1 2 3 4

x0 0 0.96 0.96 0.96 1.22 0.75 0.75 0.75 0 0.80 0.80 0.80
x1 0 2.99 2.99 2.99 8.51 2.33 2.33 2.33 0 2.49 2.49 2.49
x2 0 2.72 2.72 2.72 2.11 2.11 2.11 2.11 0 2.26 2.26 2.26
x3 0 2.72 2.72 2.72 2.11 2.11 2.11 2.11 0 2.26 2.26 2.26
x4 0 2.72 2.72 12.28 2.11 2.11 2.11 2.11 10.22 2.26 2.26 2.26
x5 0 2.72 2.72 0 2.11 2.11 2.11 2.11 2.26 2.26 2.26 2.26
x6 12.28 2.72 2.72 0 2.11 2.11 2.11 2.11 2.26 2.26 2.26 2.26
x7 2.72 2.72 2.72 0 2.11 2.11 2.11 2.11 2.26 2.26 2.26 2.26
x8 2.72 2.72 2.72 0 2.11 2.11 2.11 2.11 2.26 2.26 2.26 2.26
x9 3.81 3.81 3.81 0 2.96 2.96 2.96 7.90 3.17 3.17 3.17 8.45
x10 1.10 1.10 1.10 0 0.85 0.85 0.85 2.49 0.913 0.913 0.913 2.66

Table 5: Optimal strategy in discrete time with visible auctions in the model of Obizhaeva and Wang
for different choices of first and last. The initial order to trade is set to X0 = 100,000 shares, we
consider d = 4 days and the number of discrete trades per day is N = 10, the market depth is
q = 5,000 units, the permanent price impact parameter is λ = 1

2q
and the resiliency coefficient is

ρ = 2. The morning and the evening auction have the same length with v1 = v2 = 0.5
6.5

meaning that
an auction is modelled as 30 minutes in comparison to the 6.5 hours of continuous trading during one
day. The xi,j in the table are given in thousand shares.

true for the discrete trades x1,j directly after the morning auction. We will call these
values xm and x′

m. The bids xN,j for the evening auctions and the trades xN−1,j directly
prior to the evening auction, which we will call xe and x′

e respectively, are identical
for j = 1, ..., d − 1.
If the auctions are modelled to have the same length, v1 = v2, then one will observe
that the auction bids and the trades flanking the auctions become identical for large N ,
i.e.

lim
N→∞

xm − xe = lim
N→∞

x′
m − x′

e = 0.

Figure 16: Schematic description of the optimal strategy ”Output 1” from Table 5.
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first = 0 first = 1, .., N − 2 first = N − 1 first = N

last = N xfirst x′
first xfirst xfirst xfirst

xlast x′
last xlast x′

last xlast x′
last xlast x′

last

last = xfirst x′
first xfirst(= xlast) xfirst xfirst, .., x

′′
first

N − 1, .., 2 xlast xlast xlast

last = 1 xfirst x′
first xfirst xfirst xfirst

xlast, .., x
′′′
last xlast, .., x

′′′
last xlast, .., x

′′′
last xlast, .., x

′′′
last

last = 0 xfirst x′
first xfirst xfirst xfirst

xlast, .., x
′′
last xlast, .., x

′′
last xlast, .., x

′′
last xlast, .., x

′′
last

Table 6: The table shows how many different parameters occur in the optimal strategy in addition
to xm, x′

m, xe and x′

e depending on the choice of first and last. Thereby xfirst := xfirst,1, xlast :=
xlast,d and x′

first, x′

last are the successor and the predecessor respectively of xfirst and xlast. E.g.
for last = 0 we have x′′

last = xN−1,d−1.

What happens at the beginning of trading on the first day and the end of trading on
the last day, depends on the choice of the parameters first and last ∈ {0, ..., N}. All
possible cases are shown in Table 6. Here are some examples:
For first ∈ {1, ..., N − 2} and last ∈ {2, ..., N − 1} we have xfirst,1 = xlast,d (see
output 1). For v1 = v2 and first = 0 and last = N (we trade during the entire first
and last day), x0,1 and xN,d as well as x1,1 and xN−1,d converge to the same value for
large numbers of N (see output 2).
Besides, it is remarkable that the trades xi,j for i = 2, ..., N − 2 during continuous
trading are equal. Tests showed that they converge to zero for large N . Moreover, the
optimal strategy is linear in X0. E.g. by doubling X0 all xi,j are doubled as well.

The insights, described above, bring us to the following proposition when taking con-
tinuous instead of discrete trading time:
We get minimal cost to buy the X0 shares by minimising over maximal 11 variables,
namely xfirst,..., x′′

first, xlast,..., x′′′
last to be found in Table 6 as well as xm, x′

m, xe, x′
e and

by trading with a constant rate between the auctions. In the common case that v1 = v2

and we start trading at the beginning or the middle of the first day and stop in the
middle or the end of the last day, we get three up to at most five variables to be opti-
mised.

In this chapter we succeeded in modelling visible auctions in the Obizaheva and Wang
context. The resulting optimal strategy is characterised by constant trading during
the continuous trading phases and by discrete trades not only at the beginning of the
auctions, but also next to them.
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8 Closer inspection of the auction mechanism

So far we approached modelling auctions in a relatively basic manner: We adjusted
our time partition by the volume times v1 and v2, argued that there is only one bid
per auction and assumed similar price behaviour as in the Almgren, Chriss [2] and
Obizhaeva, Wang [20] papers. Let us now analyse the composition of the auction price
in more detail in order to understand what differing price impacts our bids on an auc-
tion might have.

Figure 17: Accumulated orders in the LOB at the end of an auction.

At the end of an auction’s calling phase, all limit and market orders in the LOB
can be summarised in a diagram like Figure 17, which we will call cumulative sup-
ply/demand curve. Marked in red is the cumulative demand curve d : IR≥ → IR≥.
Hence, d(p) is the total number of shares demanded for a price smaller than or equal
to p. Therefore, d is a decreasing and left-continuous function. In an analogous man-
ner, the blue supply curve is increasing and right-continuous. Both curves are step
functions where a step in price p represents one or more limit orders over d(p)− d(p+)
shares in case of a buy and s(p)− s(p−) shares in case of a sell order. Thereby s(0) is
the total number of shares resulting from market sell orders.
For a given price p ∈ IR≥,

min(d(p), s(p))

is the number of shares that would be traded at this price. As mentioned before,
the auction price P ∗ is the price which maximises the traded volume. Thus, P ∗ is
the intersection of the demand and the supply curve4. If there are several prices P ∗

i

which lead to the maximum traded volume, the one with the smallest imbalance or
sometimes called surplus |∆Q∗

i | will be chosen5, where

∆Q∗
i := d(P ∗

i ) − s(P ∗
i ).

4There will be no trading on the auction at all if the demand and supply curves are not overlapping.
The spread is not crossed.

5If this rule still does not lead to a price decision, there will be successive rules, which depend on
the marked place, but this goes beyond our scope. Let us just shortly pick a rule from the Frankfurt
Stock Exchange as an example: If the imbalances all have same sign, the highest price P ∗

i will be
chosen in case of a positive sign, and vice versa for a negative sign–see the green price interval in
Figure 17.
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a) Blind b) Visible

Bidding at the auction end. Bidding at the auction beginning.

Used
time
partition:

Model I Higher resiliency during the auctions by using volume time v1, v2.
Subsection 6.2 Section 7

Model II Straight line with spread.
Higher market depth q1, q2 on the auctions.

Subsections 8.1 and 8.2
Model III Straight line with crossed spread.

Higher market depth q1, q2 on the auctions.
Subsections 8.1 and 8.2

Table 7: Overview of the call auction models.

If the imbalance of the chosen auction price is unequal to zero, a price-time priority
rule will be used to decide which orders are executed. Hence, there is at most one order
that is only partly executed.

Orders corresponding to the two branches of d and s below

Q∗ := min(d(P ∗), s(P ∗))

are traded on the auction and the two branches above this level are kept in the LOB
and are forwarded to the following continuous trading phase or call auction respec-
tively. The appropriate spread in the LOB after the auction is marked in the figure.

In [17], Mendelson analyses e.g. the expectation and variance of P ∗ and Q∗. He under-
takes simplified assumptions: For example, he only considers limit orders with bounded
uniformly distributed prices over one share. This means that the step functions have
unit jumps.
To get a first intuition of the price impact on auctions, we should bear in mind that
placing a market buy order comprising x0 shares lifts the whole demand curve d up
and therefore, increases the auction price P ∗.

We will proceed with modelling the step functions as straight lines in the next subsec-
tions. This of course is equivalent to assuming a block form of the LOB as illustrated in
Figure 2. Furthermore, we will try to incorporate the fact that there is higher liquidity
during auctions, e.g. due to orders with the additional specification ”auction only”. In
order to keep track of the models already introduced and the ones to be described in
the next subsections, an overview is provided in Table 7.
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8.1 Straight line: Explanation of Model II and III

We will start this subsection by explaining our Model II. As already hinted in Table 7,
we take the supply and demand curves as the positive part of straight lines. The supply
curve has slope q and is zero for prices between 0 and the best ask. The demand curve
has slope −q and is zero for prices larger than the best bid. This corresponds to the
assumption that the same number of shares from market buy and sell orders is put on
the auction by other market participants. In Model II, we assume that the best bid
stays smaller than the best ask during the auction. This means that the supply and
demand curves do not cross each other.

If we now put a market buy order of x0 shares on the auction, P ∗ is the best ask price
plus x0

q
. The argumentation why there is only one bid on an auction is analogous to

Model I. However, the price is quite high in comparison to the price during continuous
trading where we only have to pay an extra xn

2q
on top of the best ask price at time tn.

But this high price is not intuitive, since the liquidity is usually higher on the auctions.
Therefore, it seems sensible to assume higher market depths

q1, q2 > q

on the morning and evening auction, respectively. Thereby q denotes the market depth
during continuous trading. We assume the ratio of the permanent impact to the total
impact λ̂ to be constant and invent the process of the permanent price impact Dp

analogous to Subsection 5.1. The dynamics of the average price per share and the
permanent and temporary price impact can be found in Table 8. We define

λi :=
λ̂

qi

and κi :=
κ̂

qi

for i = 1, 2.

Accordingly we set λ := λ̂
q

and κ := κ̂
q
. Once again, a backward induction yields an

optimal strategy to be found in the Appendix A.3. We included the already discussed
Model I in these tables as well for a better comparison.

The interpretation of the optimal strategy for Model II is postponed to Subsection 8.2.
We will firstly introduce another extension of our model.
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a) Blind b) Visible

I D0,j+1 = (DN,j + κxN,j)e
−ρv1 D1,j = (D0,j + κx0,j)e

−ρv1

DN,j = (DN−1,j + κxN−1,j)e
−ρv2 D0,j+1 = (DN,j + κxN,j)e

−ρv2

Dn,j = (Dn−1,j + κxn−1,j)e
−ρτ Dn,j = (Dn−1,j + κxn−1,j)e

−ρτ

P 0,j = S1,j + z
2

+ λ(X0 − X0,j + x0,j) + D1,j

P n,j = Sn,j + z
2

+ λ(X0 − Xn,j) + Dn,j +
xn,j

2q
PN,j = S0,j+1 + z

2
+ λ(X0 − XN,j + xN,j) + D0,j+1

P n,j = Sn,j + z
2

+ λ(X0 − Xn,j) + Dn,j +
xn,j

2q

II D
p
1,j = D

p
0,j + λ1x0,j

D
p
0,j+1 = D

p
N,j + λ2xN,j

D
p
n,j = D

p
n−1,j + λxn−1,j

Dt
1,j = (Dt

0,j + κ1x0,j)e
−ρτ Dt

1,j = (Dt
0,j + κ1x0,j)e

−ρv1

Dt
0,j+1 = (Dt

N,j + κ2xN,j)e
−ρv1 Dt

0,j+1 = (Dt
N,j + κ2xN,j)e

−ρv2

Dt
N,j = (Dt

N−1,j + κxN−1,j)e
−ρv2

Dt
n,j = (Dt

n−1,j + κxn−1,j)e
−ρτ Dt

n,j = (Dt
n−1,j + κxn−1,j)e

−ρτ

P 0,j = S0,j + z
2

+ D
p
0,j + Dt

0,j +
x0,j

q1
P 0,j = S1,j + z

2
+ D

p
1,j + Dt

1,j

PN,j = SN,j + z
2

+ D
p
N,j + Dt

N,j +
xN,j

q2
PN,j = S0,j+1 + z

2
+ D

p
0,j+1 + Dt

0,j+1

P n,j = Sn,j + z
2

+ D
p
n,j + Dt

n,j +
xn,j

2q

III Dp: see II
DA

1,j = DB
1,j = (DA

0,j + 1
2
(κ1 − λ1)x0,j)e

−ρτ DA
1,j = DB

1,j = (DA
0,j + 1

2
(κ1 − λ1)x0,j)e

−ρv1

DA
0,j+1 = DB

0,j+1 = (DA
N,j + 1

2
(κ2 − λ2)xN,j)e

−ρv1 DA
0,j+1 = DB

0,j+1 = (DA
N,j + 1

2
(κ2 − λ2)xN,j)e

−ρv2

DA
N,j = DB

N,j = 1
2
(DA

N−1,j + DB
N−1,j + (κ − λ)xN−1,j)e

−ρv2 DA
N,j = DB

N,j = 1
2
(DA

N−1,j + DB
N−1,j + (κ − λ)xN−1,j)e

−ρτ

DA
n,j = (DA

n−1,j + κxn−1,j)e
−ρτ

DB
n,j = (DB

n−1,j − λxn−1,j)e
−ρτ

P 0,j = S0,j + z
2

+ D
p
0,j + DA

0,j +
x0,j

2q1
P 0,j = S1,j + z

2
+ D

p
1,j + DA

1,j

PN,j = SN,j + z
2

+ D
p
N,j + DA

N,j +
xN,j

2q2
PN,j = S0,j+1 + z

2
+ D

p
0,j+1 + DA

0,j+1

P n,j = Sn,j + z
2

+ D
p
n,j + DA

n,j +
xn,j

2q

Table 8: Dynamics of the impact processes and average prices per share for the various models.
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The idea of Model III is to allow for a crossed spread during the auctions. This means
that our auction price will not only depend on the best ask price A at the end of the
auction, but also on the best bid price B. Indeed we have not modelled the developing
of the best bid price, i.e. the left hand side of our LOB, in dependence on our trading
strategy so far. For simplicity and without loss of generality we will neglect the con-
stant spread z in our following considerations.

Then our model of the best ask price is as before (see (3))

At = St + λ (X0 − Xt) + κ

n(t)∑

i=1

xie
−ρA(t−ti), (47)

where n(t) = max{ti<t} i. Our best bid price should also be affected by the permanent
price impact. But reasonably this should not happen instantly. This fact motivates
the following model for the best bid price

Bt = St + λ (X0 − Xt) − λ

n(t)∑

i=1

xie
−ρB(t−ti). (48)

When we stop trading and let t go to infinity, both At and Bt converge to

Ŝt = St + λ(X0 − Xt).

That is, ρA and ρB are the resiliency speeds of this convergence. We now want to
address the question of what happens during an auction with starting and end time
tstart and tend on which we trade x0 shares.
Let us assume that the best ask and bid price evolve on [tstart, tend] as given in (47)
and (48). In this way, it is guaranteed that Bt ≤ At. This is absolutely fine during
continuous trading, but we usually experience a crossed spread during auctions due
to high liquidity. Therefore we assume that A and B move towards each other by an
appropriately large price c > 0 on each auction. ”Appropriately large” means that we
want to be able to compute our auction price as

P ∗ =
Atend

+ Btend

2
+

x0

2q
.

This implies that we have to assume c to satisfy the following inequality which is visu-
alised through the green gradient triangle in Figure 18:

Atend
− c ≤ Btend

+ c − x0

q
.

With the above assumption our auction price per share thus is

P ∗ =
Atend

+ Btend

2
+

x0

2q

= Stend
+ λ (X0 − Xtend

) +
1

2


κ

n(tend)∑

i=1

xie
−ρA(tend−ti) − λ

n(tend)∑

i=1

xie
−ρB(tend−ti) +

x0

q


 .
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8. Closer inspection of the auction mechanism

Figure 18: Schematic picture of the LOB during an auction to illustrate Model III.

For the best bid and ask prices after the auction we have

Atend+ = Btend+ = P ∗.

After all, we can summarise

At = St + D
p
t + DA

t and (49)

Bt = St + D
p
t + DB

t for t ∈ [0, T ]

for the permanent impact Dp and the temporary impact DA and DB as given in
Table 8 under III. In the table different market depths q1 and q2, as explained above,
are additionally inserted into the processes and the average price per share for blind
auctions finally is

P 0,j = A0,j +
x0,j

2q1
,

PN,j = AN,j +
xN,j

2q2
and

P n,j = An,j +
xn,j

2q
for n = 1, .., N − 1.

It is worth mentioning that we had to set ρA = ρB (see (47) and (48)) to be able to
formulate the best ask and bid prices as in (49) and to do our backward induction.
The results are given in Appendix A.3.
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8. Closer inspection of the auction mechanism

8.2 Straight line: Optimal strategies

Figure 19: Optimal strategies (xn,j) for the various models as given in Table 7 for q1 = q2 = q. We

have chosen X0 = 100,000 and q = 5,000 shares, ρ = 20, λ̂ = 2

3
, v1 = v2 = 0.5

6.5
and considered a period

of d = 5 days and N = 49 trading times per day.

In Figure 19 you see explicit optimal strategies as given in Table A.3 for the various
models in the special case that q1 = q2 = q. Please note that the axes of ordinates
have different scaling. The peaks mark the auction phases. That is

xN−1,j, xN,j , x0,j+1 and x1,j+1 for j = 1, ..., d − 1

are of utmost importance. Each of the optimal strategies for the various models have
the same two characteristics:

• The level of trading during continuous trading is constant not only over one day
but also over all days j = 1, ..., d.

• The auction phases are identical. This means that
for every fixed i = N − 1, N, 0 or 1, xi,j = xi,j+1 for all j = 1, ..., d − 1.

The appearance of the auction phases depends heavily on the model and the chosen
parameters.

Let us now turn to the case where the market depth on the morning and evening
auction q1 and q2 are bigger than q. As Figure 20 suggests, the two characteristics
mentioned above are not true anymore for the strategies of the Models II and III
where q1 and q2 are relevant: Indeed the trading level during continuous trading is
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8. Closer inspection of the auction mechanism

Figure 20: Optimal strategies (xn,j) for the various models for q1 = q2 = 1.05q. We have chosen

X0 = 100,000 and q = 5,000 shares, ρ = 20, λ̂ = 1

3
, v1 = v2 = 0.5

6.5
and considered a period of d = 5

days and N = 19 trading times per day.

constant during one day, but this constant changes daily and the auction profiles are
not identical anymore. Moreover, the parameters for the optimisation have to be cho-
sen very carefully. That is q1 and q2 > q have to be small enough. Otherwise we get
negative values for some xn,j . The strategies become unusual, since we only modelled
buying and not selling of shares.

Getting a closer insight into the auction price determination gave the idea to model the
supply and demand curves on auctions as straight lines. The optimal strategies that
we derived are indeed similar to the ones from Chapter 7, but their auction phases are
different. It ultimately depends on the market place which of the presented models are
applicable.
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9. Generalisation of the block shape of the LOB

9 Generalisation of the block shape of the LOB

9.1 Exponential decay of the area

Inspired by the paper of Obizhaeva and Wang [20], we have considered a block shape of
the LOB so far. Now we want to analyse more general forms of the LOB. To simplify
matters, we do not take into account permanent impact. The form of the LOB is
described by a continuous, positive function f : IR −→ IR>0. The best ask and bid
price at time zero are modelled as before as

A0 = S0 +
z

2
and B0 = S0 −

z

2
,

where S is the Bachelier model and z the constant spread. Since we are only buying
shares, we neglect the left hand side of the LOB. An illustration can be found in Fig-
ure 21.
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Price per share

Number of shares

D0+

A0 = S0 + z
2

A0+

f(0)

f

f(D0+)

x0 = E0+

Figure 21: Illustration of the processes D and E.

We now describe how a purchase of x0 shares at time zero effects the LOB and how
much we pay for this purchase. The best ask will be temporarily increased by an extra
spread D0+ to the level

A0+ = A0 + D0+.

Let F be the antiderivative of the LOB form f . Then this extra spread D0+ is defined
via ∫ D0+

0

f(x)dx = x0 ⇔ D0+ = F−1(x0).

The cost we have to pay for the total purchase of the x0 shares is

(S0 +
z

2
)x0 +

∫ D0+

0

xf(x)dx. (50)

This means that we receive the total cost by multiplying the price per share (x) and the
amount (f(x)). The price per share lies in the whole range [S0 + z

2
, S0 + z

2
+ D0+]– the
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9. Generalisation of the block shape of the LOB

cheapest shares within the package of the x0 shares are executed at A0 per share, but
we are charged up to A0+ for the more expensive ones in the package. If we divide (50)
by x0, we will get the average price per share. This motivates the following definition
of the average price per share at time tn:

P tn = Stn +
z

2
+

1

xn

∫ Dtn+

Dtn−

xf(x)dx, (51)

where we trade at equidistant discrete trading times tn = nτ for n = 0, ..., N and
τ := T

N
. Thereby xn is the number of shares we trade at tn.

To complete our model, we still need to specify the dynamic of the extra spread Dt or
the resiliency effect, respectively. We do that be defining the process Et of the shares
already eaten up from the LOB:

Et =

∫ Dt

0

f(x)dx. (52)

It is simply the area that corresponds to the extra spread (see Figure 21) and (52) is
equivalent to

Dt = F−1(Et). (53)

Both D and E are only relevant at the discrete trading times tn. Using (52) and (53),
we can transfer one process into the other.
As in the Obizhaeva and Wang paper [20], we assume that the resiliency of the LOB
leads to an exponential decrease– the question is if Et or Dt is exponentially decreased,
which only makes a difference if the LOB form f is not constant. Both alternatives
seem reasonable and therefore we want to examine both of them. The exponential
decrease of the extra spread D is considered in Subsection 9.2. We start by dealing
with the area decaying model and set:

E0− = 0, Etn+ = Etn− + xn, Etk+1− = e−ρτEtk+ = e−ρτ (Etk− + xk) (54)

for n = 0, ..., N and k = 0, ..., N − 1. As in the Obizhaeva and Wang model [20],
the constant ρ is the resiliency speed of the LOB. Incidentally, it would be possible
to understand the processes E and D to be left-continuous, but instead we use the
notation Dtn− and Dtn+, which turns out to be more convenient.

Let us consider the antiderivative F of the LOB shape f and the integral which emerges
in the price term (51):

F (x) :=

∫ x

0

f(y)dy and F̃ (x) :=

∫ x

0

yf(y)dy.

Then F , F−1 and F̃ are continuously differentiable and strictly increasing on IR.
The function F is assumed to be unbounded in the sense that

lim
x→∞

F (x) = ∞ and lim
x→−∞

F (x) = −∞.
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9. Generalisation of the block shape of the LOB

As before, we want to buy X0 shares until time T and minimise the expectation of the
cost. To this end we look for an optimal strategy in the set of all static strategies

Ξ := {(x0, ..., xN ) ∈ IRN+1|
N∑

n=0

xn = X0}.

The expected cost incurred by such a strategy is

C0 (x0, ..., xN) := E

[
N∑

n=0

xnP tn

]
.

Consequently, our optimisation problem is

C0 := min
Ξ

E

[
N∑

n=0

xnP tn

]
. (55)

Proposition 29. (Optimal strategy for exponentially decaying area)
Suppose that the function

hE(u) := F−1(u) − e−ρτF−1(e−ρτu)

is one-to-one. Then the optimal strategy is

x1 = ... = xN−1 = x0

(
1 − e−ρτ

)
, xN = X0 − x0 − (N − 1)x0

(
1 − e−ρτ

)
(56)

and the initial trade x0 is uniquely defined by the equation

F−1
(
X0 − Nx0

(
1 − e−ρτ

))
=

hE(x0)

1 − e−ρτ
. (57)

In particular, this implies x0, ..., xN > 0 and

Etn− = x0e
−ρτ for n = 1, ..., N . (58)

Remark 30. According to the dynamic (54), (56) and (58), the left hand side of (57)
is equal to DtN+:

DtN+ = F−1 (EtN+) = F−1 (EtN− + xN )

= F−1
(
x0e

−ρτ + X0 − x0 − (N − 1)x0

(
1 − e−ρτ

))

= F−1
(
X0 − Nx0

(
1 − e−ρτ

))
.

That is the optimal strategy depends only on the initial trade x0, which itself de-
pends on f and can be computed by equation (57). Besides, the proposition tells us
that x1, ..., xN−1 are of equal size just as in the Obizhaeva and Wang model [20], which
assumes f being constant. Furthermore, the optimal strategy is characterised by the
fact that the initial trade eats up part of the LOB and therefore shifts the process E

to the level E0+ = x0. Afterwards the following trades x1, .., xN−1 consume exactly the
limit sell orders that newly flow into the book, due to the resiliency of the LOB, such
that the process E stays constant. At the end, at time tN , the remaining shares are
bought. A few examples can be found in Subsection 9.3.
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9. Generalisation of the block shape of the LOB

Proof of Proposition 29: The cost functional can be written as

C0(x0, ..., xN) =
(
S0 +

z

2

)
X0 +

N∑

n=0

∫ Dtn+

Dtn−

xf(x)dx

=
(
S0 +

z

2

)
X0 +

N∑

n=0

(
F̃
(
F−1 (Etn+)

)
− F̃

(
F−1 (Etn−)

))
.

Hence, with

G(x) := F̃
(
F−1(x)

)

our minimisation problem is equivalent to the minimisation of

C̃0 (x0, ..., xN) =
N∑

n=0

(G (Etn− + xn) − G (Etn−)) (59)

= G (x0) − G (0)

+G
(
x0e

−ρτ + x1

)
− G

(
x0e

−ρτ
)

+G
(
x0e

−2ρτ + x1e
−ρτ + x2

)
− G

(
x0e

−2ρτ + x1e
−ρτ
)

+...

+G
(
x0e

−Nρτ + ... + xN

)
− G

(
x0e

−Nρτ + ... + xN−1e
−ρτ
)
.

The derivative of G is

G′(x) = F̃ ′ (F−1(x)
)
(F−1)′(x) = F−1(x)f

(
F−1(x)

) 1

f(F−1(x))
= F−1(x). (60)

Therefore, G is twice continuously differentiable, positive and convex. Furthermore G

is increasing for positive x and decreasing for negative x. Therefore the following
inequality holds for all x ∈ IR and c ∈ [0, 1]

G(x) − G(cx) ≥ (1 − c)|G′(x)||x| = (1 − c)|F−1(x)||x|. (61)

It will be useful in Lemma 31.

After these preparations the proof proceeds as follows: In Step i) we prove that the
optimal strategy has the form (56) and in ii) we derive equation (57). In the last step
the uniqueness and the positivity of the strategy are shown.

Step i)
In order to have the existence of a Lagrange multiplier we need the following lemma.

Lemma 31. There exists a local minimum of C̃0 in Ξ.

Proof of Proposition 31: We prove this lemma by showing that there is a cost ex-
plosion for extreme trading strategies ~x = (x0, ..., xN ) ∈ IRN+1, i.e. C̃0(x0, ..., xN )
converges to infinity for ‖~x‖ → ∞. We start by rearranging the sum in (59) in order
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9. Generalisation of the block shape of the LOB

to use inequality (61). We obtain

C̃0(x0, ..., xN )

= G
(
x0e

−Nρτ + ... + xN

)
− G (0)

+

N−1∑

n=0

G(e−nρτx0 + ... + xn) − G(e−ρτ (e−nρτx0 + ... + xn))

≥ G
(
x0e

−Nρτ + ... + xN

)
− G (0)

+(1 − e−ρτ )

N−1∑

n=0

∣∣F−1(e−ρτ (e−nρτx0 + ... + xn))
∣∣ ∣∣e−nρτx0 + ... + xn

∣∣ .

Because of F being unbounded, we know that both G(x) and |F−1(e−ρτx)||x| converge
to infinity for |x| → ∞. It is easy to see that at least one of the terms |e−nρτx0 + ... + xn|
converge to infinity for ‖~x‖ → ∞. This proves Lemma 31.

Due to Lemma 31, we can apply Theorem 4, page 109 of [10] which you find in the
Appendix A.4 in the form we are using it here. According to this, there exists a
Lagrange multiplier ν ∈ IR such that the optimal strategy satisfies

∂

∂xj

C̃0(x0, ..., xN) = ν

for j = 0, ..., N . Now we use the form of C̃0 as given in (59) to obtain the following

connection between the partial derivatives of C̃0 for j = 0, ..., N − 1:

∂

∂xj

C̃0(x0, ..., xN) = e−ρτ

[
∂

∂xj+1
C̃0(x0, ..., xN) − G′ (e−ρτ (x0e

−jρτ + ... + xj)
)]

+ G′ (x0e
−jρτ + ... + xj

)

Recalling (60), we can compute the optimal strategy from the equations

hE

(
x0e

−jρτ + ... + xj

)
= ν

(
1 − e−ρτ

)
for j = 0, ..., N − 1.

Hence, we get the following optimal strategy

x0 = h−1
E

(
ν
(
1 − e−ρτ

))

xj = x0

(
1 − e−ρτ

)
for j = 0, ..., N − 1 (62)

xN = X0 − x0 − (N − 1)x0

(
1 − e−ρτ

)
.

In this situation we need hE to be one-to-one.
Note that the uniqueness of the optimal strategy will be shown in Step iii).

Step ii)
We would now like to know in more detail how to choose the optimal initial trade x0

and therefore consider the term

C̃0(x0) := C̃0(x0, x0

(
1 − e−ρτ

)
, ..., x0

(
1 − e−ρτ

)
, X0 − x0 − (N − 1)x0

(
1 − e−ρτ

)
)

= G(x0) − G(0) + (N − 1)
[
G
(
x0e

−ρτ + x0

(
1 − e−ρτ

))
− G

(
x0e

−ρτ
)]

+

G
(
x0e

−ρτ + X0 − x0 − (N − 1)x0

(
1 − e−ρτ

))
− G

(
x0e

−ρτ
)

= N
[
G(x0) − G

(
x0e

−ρτ
)]

+ G
(
X0 + Nx0

(
e−ρτ − 1

))
− G(0) (63)
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9. Generalisation of the block shape of the LOB

in order to minimise with respect to x0. We have used the fact that the optimal
strategy (62) satisfies

Etn− = e−ρτ
(
x0e

−ρτ + x0

(
1 − e−ρτ

))
= x0e

−ρτ

due to the dynamics (54). Differentiating (63) with respect to x0 and resolving for the
minimum gives

dC̃0(x0)

dx0
= (64)

N
[
G′(x0) − e−ρτG′ (x0e

−ρτ
)

+
(
e−ρτ − 1

)
G′ (X0 + Nx0

(
e−ρτ − 1

))]

Equaling this to zero implies

e−ρτ
[
G′ (X0 + Nx0

(
e−ρτ − 1

))
− G′ (x0e

−ρτ
)]

(65)

= G′ (X0 + Nx0

(
e−ρτ − 1

))
− G′(x0).

This will also be needed later on. Because of G′(x) = F−1(x), (65) implies that C̃0(x0)
will become minimal if the initial trade x0 satisfies the condition

(
1 − e−ρτ

)
F−1

(
X0 + Nx0

(
e−ρτ − 1

))
= F−1(x0) − e−ρτF−1(x0e

−ρτ ).

Step iii)
We conclude by proving the uniqueness of the optimal strategy, which according to the
preceding steps is equivalent to the uniqueness of the Lagrange multiplier ν. Recall-
ing (64), ∂

∂x0
C̃0(x0) = NĥE(x0) with

ĥE(u) := hE(u) −
(
1 − e−ρτ

)
F−1(X0 − Nu

(
1 − e−ρτ

)
).

Thus we will be finished if we can show that ĥE is strictly increasing and therefore has
at most one zero.
We know that hE(0) = 0, hE(u) > 0 for u > 0 and hE is continuous and one-to-one.
Consequently hE is strictly increasing and therefore

ĥ′
E(u) = h′

E(u) +
N (e−ρτ − 1)

2

f (F−1 (X0 + Nu (e−ρτ − 1)))
> 0.

Furthermore, the positivity of the optimal initial trade x0 follows immediately, since

ĥE(0) =
(
e−ρτ − 1

)
F−1(X0) < 0.

The last trade xN is strictly positive as well, since assuming xN ≤ 0 would mean that
DtN+ ≤ Dt1− < D0+ which is a contradiction to e−ρτ [DtN+ − Dt1−] = DtN+ − D0+ as
given in (65).
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Remark 32. (When is hE one-to-one?)
As mentioned in the proof of Proposition 29, hE is continuous with hE(0) = 0 and
hE(u) > 0 for u > 0. That means that hE is one-to-one if and only if hE is strictly
increasing. We want to consider when this is the case:

h′
E(u) =

1

f(F−1(u))
− e−2ρτ

f(F−1(e−ρτu))
> 0

for all u ∈ IR is equivalent to

l(u) := f(F−1(e−ρτu)) − e−2ρτf(F−1(u)) > 0. (66)

That is, the function hE will be one-to-one for instance if the assumed LOB shape
function f is decreasing for u > 0 and increasing for u < 0.

F−1(u
n
)F−1(u)

x
0

f(x)

(n2 + 1)q

u

q

Figure 22: The figure shows an example for a function f such that the corresponding function hE is
not one-to-one.

We now want to give an example for a LOB shape f such that the corresponding hE

is not one-to-one. For this purpose, we assume that there exists an n ∈ {2, 3, ...} such
that e−ρτ = 1

n
. We set as plotted in Figure 22

f(x) :=






q x ∈ [0,
1
2
n2+1

n−1
)

q + n2q(x −
1
2
n2+1

n−1
) x ∈

[
1
2
n2+1

n−1
,

1
2
n2+1

n−1
+ 1
]

(n2 + 1)q x ∈
(

1
2
n2+1

n−1
+ 1,∞

)

and u := (
1
2
n2+1

n−1
+ 1)q + 1

2
n2q such that F−1(u) =

1
2
n2+1

n−1
+ 1 as well as

F−1(e−ρτu) = F−1(
u

n
) =

1
2
n2 + 1

n − 1
.

Hence, we get

f
(
F−1

(
e−ρτu

))
= q < q

(
1 +

1

n2

)
= e−2ρτf

(
F−1(u)

)
,

which tells us according to (66) that the corresponding hE is not strictly increasing.
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9. Generalisation of the block shape of the LOB

9.2 Exponential decay of the extra spread

We now want to change the model introduced in the last section in the following way.
Instead of the exponential decay of the process E of the shares already eaten up, we
want D to decay exponentially. Of course this does not make a difference if f is constant
(see Example 0 in Subsection 9.3). That is D has the dynamics

D0− = 0, Dtn+ = F−1 (xn + F (Dtn−)) and Dtn+1− = e−ρτDtn+. (67)

The second equation in (67) is motivated by

∫ Dtn+

Dtn−

f(x)dx = xn.

All other definitions such as the price process (51) and our optimisation problem (55)
remain as in Subsection 9.1.

Proposition 33. (Optimal strategy for exponentially decaying extra spread)
Suppose that the function

hD(x) := x
f(x) − e−2ρτf(e−ρτx)

f(x) − e−ρτf(e−ρτx)

is one-to-one and that F̃ is convex. Then the optimal strategy is

x1 = ... = xN−1 = x0 − F
(
e−ρτF−1(x0)

)
, (68)

xN = X0 − Nx0 + (N − 1)F
(
e−ρτF−1(x0)

)

and the initial trade x0 is uniquely defined by the equation

F−1
(
X0 − N [x0 − F (e−ρτF−1(x0))]

)
= hD

(
F−1(x0)

)
. (69)

In particular, this implies x0, ..., xN > 0 and Dtn− = e−ρτF−1(x0) for n = 1, ..., N .

Remark 34. Similar to Proposition 29, we can show that the left hand side of (69) is
equal to DtN+. According to the dynamic (67) and (68) we have

D0+ = F−1(x0) Dt1− = e−ρτD0+ DtN+ = F−1 (X0 − N [x0 − F (Dt1−)]) .

The proposition tells us that the initial trade x0 eats a gap into the LOB which stays
constant until tN−. The trades x1 to xN−1 are of same size and only consume the
limit sell orders that newly flow into the book due to the resiliency effect. That is,
we have an optimal level of the extra spread of Dtn− = e−ρτF−1(x0) in comparison to
Proposition 29 where we had Etn− = x0e

−ρτ . This corresponds to Dtn− = F−1 (e−ρτx0).

Proof of Proposition 33: Again our cost are

C0 =
(
S0 +

z

2

)
X0 + min

Ξ
C̃0(x0, ..., xN ),
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but with

C̃0(x0, ..., xN) :=

N∑

n=0

(
G (xn + F (Dtn−)) − F̃ (Dtn−)

)
(70)

and F, F̃ and G as given in Subsection 9.1. The structure of the proceeding proof is
similar to Proposition 29: We start by showing that there exists a local minimum of C̃0

in Ξ. To do so, we need the convexity of F̃ . In i) we then derive the optimal strategy
as given in (68). In ii) we then show that the optimal initial trade x0 is characterised
by (69). Finally, we prove the uniqueness and positivity of the optimal strategy in
Step iii).

Lemma 35. There exists a local minimum of C̃0 in Ξ.

Proof of Lemma 35: As for Lemma 31, we show that there is a cost explosion for
extreme trading strategies ~x = (x0, ..., xN ) ∈ IRN+1. Rearranging the sum in (70) gives

C̃0(x0, ..., xN) =

N−1∑

n=0

[
F̃
(
F−1(xn + F (Dtn−))

)
− F̃

(
e−ρτF−1(xn + F (Dtn−))

)]

+ F̃
(
F−1(xN + F (DtN−))

)
. (71)

The function F̃ is increasing for positive x, decreasing for negative x and we assumed
it to be convex. Therefore the following inequality holds

F̃ (x) − F̃ (e−ρτx) ≥ (1 − e−ρτ )|F̃ ′(e−ρτx)||x| = (1 − e−ρτ )e−ρτx2f(e−ρτx).

It can be used in (71) to obtain

C̃0(x0, ..., xN)

≥ (1 − e−ρτ )e−ρτ

N−1∑

n=0

(
F−1 (xn + F (Dtn−))

)2
f
(
e−ρτF−1(xn + F (Dtn−))

)

+F̃
(
F−1(xN + F (DtN−))

)
.

Because of F being unbounded, we know that both (F−1(x))2 and F̃ (F−1(x)) = G(x)
converge to infinity for |x| → ∞. Moreover, at least one of the terms |xn + F (Dtn−)|
for n = 0, .., N converge to infinity for ‖~x‖ → ∞ because Dtn− depends on x0, ..., xn−1

only. This proves Lemma 35.

Step i)

We use the form of C̃0 as given in (70) to receive the following connection between the

partial derivatives of C̃0 for i = 0, ..., N − 1 (see Lemma 36):

∂

∂xi

C̃0(x0, ..., xN) = (72)

F−1 (xi + F (Dti−)) +
e−ρτf

(
Dti+1−

)

f (F−1 (xi + F (Dti−)))

[
∂

∂xi+1
C̃0(x0, ..., xN ) − Dti+1−

]
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Analogously to the proof of Proposition 29, we can use Lemma 35 and the theorem
given in Appendix A.4 to guarantee the existence of a Lagrange multiplier ν such
that (72) is equivalent to

ν = hD

(
F−1 (xi + F (Dti−))

)

for i = 0, ..., N − 1. Hence, we get the following optimal strategy

x0 = F
(
h−1

D (ν)
)

(73)

xi = x0 − F (Dti−)

= x0 − F
(
e−ρτF−1(x0)

)
for i = 1, ..., N − 1

xN = X0 − x0 − (N − 1)
[
x0 − F

(
e−ρτF−1(x0)

)]
.

We applied that
Dti− = e−ρτF−1(x0) (74)

for i = 1, ..., N as one sees by using induction and (67):

Dti− = e−ρτF−1
(
x0 − F

(
e−ρτF−1(x0)

)
+ F

(
e−ρτF−1(x0)

))
= e−ρτF−1(x0).

Incidentally, we needed h−1
D to be one-to-one in (73).

Step ii)
Now we would like to know in more detail how to choose the optimal initial trade x0

and therefore consider the term

C̃0(x0) := C̃0

(
x0, x0 − F

(
e−ρτF−1(x0)

)
, ..., X0 − Nx0 + (N − 1)F

(
e−ρτF−1(x0)

))

= N
[
G(x0) − F̃

(
e−ρτF−1(x0)

)]
+ G

(
X0 + N

[
F
(
e−ρτF−1(x0)

)
− x0

])
.

We used again that Dti− = e−ρτF−1(x0) for i = 1, ..., N as explained in (74). Differen-
tiating with respect to x0 gives (69) as desired:

∂

∂x0

C̃0(x0) = N

[
D0+ − e−2ρτD0+

f(Dt1−)

f(D0+)
+ DtN+(e−ρτ f(Dt1−)

f(D0+)
− 1)

]
!
= 0

⇔ DtN + = D0+
f(D0+) − e−2ρτf(Dt1−)

f(D0+) − e−ρτf(Dt1−)

Step iii)
We conclude the proof by showing the uniqueness and the positivity of the optimal
strategy:
Similar to Proposition 29, the optimal strategy is unique because equation (69) has at
most one solution x0. We prove this by showing that

ĥD(x) := hD

(
F−1(x)

)
− F−1

(
X0 − N

[
x − F

(
e−ρτF−1(x)

)])

is strictly increasing. We have

ĥ′
D(x) =

h′
D (F−1(x))

f (F−1(x))
+ N

f (F−1(x)) − e−ρτf (e−ρτF−1(x))

f (F−1(x)) f (F−1 (X0 − N [x − F (e−ρτF−1(x))]))
> 0,
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since hD is increasing and the numerator of the second term

h1(x) := f(x) − e−ρτf(e−ρτx)

is strictly positive for all x ∈ IR due to hD being one-to-one. We see this as follows:
We also define

h2(x) := f(x) − e−2ρτf(e−ρτx)

with h1(x) < h2(x) for all x ∈ IR and

hD(x) = x
h2(x)

h1(x)
.

Besides, we can compute hD(0) = 0 and h′
D(0) = 1−e−2ρτ

1−e−ρτ > 0. Hence, hD is strictly
increasing and positive, since hD is one-to-one. Therefore the denominator h1 of hD

has to be strictly positive.

The positivity of x0 is clear because ĥD(0) = −F−1(X0) < 0. Thus,

xi = x0 − F (e−ρτF−1(x0)) > 0

for i = 1, ..., N − 1. So it only remains to show that xN > 0. Let us thereto assume
that x0, x1 > 0 but xN ≤ 0. That is D0+ > 0 and

DtN+ = D0+
f(D0+) − e−2ρτf(e−ρτD0+)

f(D0+) − e−ρτf(e−ρτD0+)
≤ Dt1− = e−ρτD0+.

This gives a contradiction because the denominator f(D0+)−e−ρτf(e−ρτD0+) is strictly
positive as we already argued above.

Lemma 36. (Partial derivatives of C̃0)

We have the following recursive scheme for the derivatives of C̃0(x0, ..., xN)
for i = 0, ..., N − 1:

∂

∂xi

C̃0(x0, ..., xN) = (75)

F−1 (xi + F (Dti−)) +
e−ρτf

(
Dti+1−

)

f (F−1 (xi + F (Dti−)))

[
∂

∂xi+1
C̃0(x0, ..., xN) − Dti+1−

]

Proof: Using (67) one can compute that for a fixed n ∈ 1, .., N we have

∂

∂xi

Dtn−(x0, ..., xn−1) =
e−ρτf(Dti+1−)

f (F−1 (xi + F (Dti−)))

∂

∂xi+1

Dtn−(x0, ..., xn−1) (76)

for i = 0, ..., n − 2. Furthermore one calculates that, according to (70) and (60),

∂

∂xi

C̃0(x0, ..., xN ) = F−1 (xi + F (Dti−)) (77)

+

N∑

n=i+1

f(Dtn−)
∂

∂xi

Dtn−(x0, ..., xn−1)
[
F−1 (xn + F (Dtn−)) − Dtn−

]

for i = 0, .., N . Plugging both (77) and (76) into (75) gives a true statement.
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Remark 37. (When is hD one-to-one?)
To complete this section we now give an example for a LOB form f such that the
corresponding hD is not one-to-one. Since hD is continuous and hD(0) = 0, we will be
done if we can specify x−, x+ > 0 such that hD(x−) < 0 and hD(x+) > 0. For this
purpose, we assume that there exist n ∈ {2, 3, ...} such that e−ρτ = 1

n
and set f as

plotted in Figure 23 to

f(x) :=





(n + 1)q x ∈
[
0, 1

n

)

(n + 1)q − n2q

n−1

(
x − 1

n

)
x ∈

[
1
n
, 1
]

q x ∈ (1,∞)

Furthermore, we define x− := 1 and x+ := 1
n

to obtain

hD(x−) =
n2 − (n + 1)

−n
< 0 and hD(x+) =

1 − e−2ρτ

n (1 − e−ρτ )
> 0.

x+ = 1

n
x− = 1 x0

f(x)

(n + 1)q

q

Figure 23: The figure shows an example for a function f such that the corresponding hD is not
one-to-one.

9.3 Examples

Let us refer to the area decaying model from Subsection 9.1 as model a) and let the
one where the extra spread decays be model b). We first consider the block form
f(x) ≡ q > 0 for the LOB shape f . This corresponds to the Obizhaeva and Wang
model with permanent impact constant λ = 0. Then we have F (x) = qx, F−1(x) = x

q

and

D0+ =
x0

q
Dt1− = e−ρτ x0

q
DtN+ = e−ρτ x0

q
+

X0 − x0 − (N − 1)x0 (1 − e−ρτ )

q
(78)

for model a) as well as b). Since the corresponding functions hE and hD are one-to-one
for a constant f ≡ q, we can apply Proposition 29 and 33. Plugging (78) into (57)
and (69) respectively and solving for x0 gives in both cases

x0 =
X0

(N − 1) (1 − e−ρτ ) + 2
,
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0.5 1.5 2

2000

4000

6000

8000

10000

x

f(x)

0 1

5, 000 0

1
2

3

4
5

Figure 24: Exemplary LOB forms as given in Table 9 for q = 5,000 shares. The example numbers are
given at the right hand side.

Model a) Model b)
f(x) x0 x1 = ... = xN−1 xN x0 x1 = ... = xN−1 xN

0 q 10,223 8,839 10,223 10,223 8,839 10,223
1 q√

x+1
10,257 8,869 9,925 10,756 8,724 10,726

2 q

x+1
10,303 8,909 9,520 13,305 8,154 13,305

3 qex 10,139 8,767 10,962 9,735 8,947 9,741
4 q

10
x + q 10,211 8,829 10,326 10,130 8,860 10,131

5 q

10
x2 + q 10,192 8,812 10,498 10,101 8,868 10,091

Table 9: The table shows optimal strategies for various exemplary choices of the LOB form f . We
set X0 = 100,000 and q = 5,000 shares, ρ = 20, T = 1 and N = 10.

which is exactly what we got in Proposition 1 of Chapter 3.

We can now consider various other examples taking into account that

D0+ = F−1(x0) Dt1− = F−1
(
x0e

−ρτ
)

DtN+ = F−1
(
X0 − Nx0

(
1 − e−ρτ

))

in case of model a) and when considering model b) we have

D0+ = F−1(x0) Dt1− = e−ρτD0+ DtN+ = F−1 (X0 − N [x0 − F (Dt1−)])) .

Plugging this into (57) and (69) respectively, we can explicitly derive the optimal initial
trade x0. By using (56) and (68), x1, ..., xN can be computed. A few results can be
found in Table 9. We check in the appendix that Proposition 29 and 33 can be applied
tor these examples and therefore the existence of an optimal strategy is guaranteed.
Incidentally, explicit calculations with the LOB shape f(x) = q√

x+1
, having nice func-

tions F , F−1 and F̃ , gave the idea to Proposition 29.

Recapitulatory, we were not satisfied with the block shape and therefore allowed a
more general form f of the LOB. We wanted to know how this changes our optimal
strategy in the risk-neutral and discrete trading time case without permanent impact.
Astonishingly we still obtain two large trades at time 0 and T and constant trading in
between regardless of whether the area or the extra spread is decaying.
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A. Appendix

A Appendix

A.1 Overview of the used constants and processes

The explicit parameter values are set as in the Obizhaeva and Wang paper to make
the results comparable.

Constants with example values
z: Bid-ask spread (z = 2 ticks)
q: Market depth (q = 5,000 shares)
λ: Constant of the permanent price impact

(λ = 1
2q

= 10−4 ticks per share)

κ: Constant of the temporary price impact
(κ := 1

q
− λ = 10−4 ticks per share)

λ̂: Ratio of the permanent to the total price impact (κ̂ = 0.5)

κ̂: Ratio of the temporary to the total price impact (κ̂ := 1 − λ̂)
ρ: Resiliency of the LOB (ρ = 2.31)
ϑ: Half-life of the LOB (ϑ = 117 minutes)
T : Given end of the trading horizon

(T = 1 trading day= 6.5 trading hours)
N : N + 1 is the total number of trading times t0, ..., tN in the discrete time case

Processes
A: Best ask price in the LOB
B: Best bid price in the LOB
C: Cost under the optimal strategy still to be paid

D: Temporary impact, i.e. deviation of the intrinsic best ask price (Ŝ + z
2
)

and the actual best ask price A

P : The average price per share achieved by the trader
S: Equilibrium asset price with volatility σ (S0 = 4,000 ticks)

Ŝ: S plus the permanent price impact
X: Number of shares left to be acquired (X0 = 100,000 shares)
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A.2 Sequences of Corollary 22

αN = 1
2qN

and αn = αn+1 + 1
2
a
∫ tn+1

tn
σ2

t dt − 1
4
δn+1ε

2
n+1

βN = 1 and βn = βn+1 exp
(
−
∫ tn+1

tn
ρtdt

)
+ 1

2
δn+1εn+1φn+1

γN = 0 and γn = γn+1 exp
(
−2
∫ tn+1

tn
ρtdt

)
− 1

4
δn+1φ

2
n+1

ηN = zN

2
and ηn = ηn+1 + 1

2
δn+1εn+1ϕn+1

µN = 0 and µn = µn+1 exp
(
−
∫ tn+1

tn
ρtdt

)
− 1

2
δn+1φn+1ϕn+1

ωN = 0 and ωn = ωn+1 − 1
4
δn+1ϕ

2
n+1

δn =
[

1
2qn−1

− λ̂
qn−1

+ αn + 1
2
a
∫ tn

tn−1
σ2

t dt

− κ̂
qn−1

exp
(
−
∫ tn

tn−1
ρtdt

)
βn + ( κ̂

qn−1
)2 exp

(
−2
∫ tn

tn−1
ρtdt

)
γn

]−1

εn = 2αn + a
∫ tn

tn−1
σ2

t dt − λ̂
qn−1

− κ̂
qn−1

exp
(
−
∫ tn

tn−1
ρtdt

)
βn

φn = 1 − exp
(
−
∫ tn

tn−1
ρtdt

)
βn + 2 κ̂

qn−1
exp

(
−2
∫ tn

tn−1
ρtdt

)
γn

ϕn = zn−1

2
− ηn + µn

κ̂
qn−1

exp
(
−
∫ tn

tn−1
ρtdt

)
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A.3 Results of the backward induction for the auction models I to III

In the following table, the results of the backward induction for the various auction models I to III are given in the order:
cost structure, optimal strategy, initialisation and backward recursion of the used sequences.

a) Blind b) Visible
I Cn,j = (Sn,j + z

2
)Xn,j + λX0Xn,j + αn,jX

2
n,j + βn,jXn,jDn,j + γn,jD

2
n,j

xn,j = 1
2
δn+1,j[εn+1,jXn,j − φn+1,jDn,j]

αlast,d = 1
2q

− λ, βlast,d = 1 αlast,d =





κe−ρv1

κe−ρv2

1
2q

− λ

, βlast,d =





e−ρv1 if last = 0

e−ρv2 if last = N

1 otherwise

τa
n = {v1 if n = 0,v2 if n = N , τ otherwise} τ b

n = {v1 if n = 1,v2 if n = 0, τ otherwise}
α = α′ − 1

4
δ′ε′2 α = α′ − 1

4
δ′ε′2

β = β ′e−ρ(τa)′ + 1
2
δ′ε′φ′ β = β ′e−ρ(τb)′ + 1

2
δ′ε′φ′

γ = γ′e−2ρ(τa)′ − 1
4
δ′φ′2 γ = γ′e−2ρ(τb)′ − 1

4
δ′φ′2

δ =
(

1
2q

+ α − κe−ρτa

β + κ2e−2ρτa

γ
)−1

δ =


α − κe−ρτb

β + κ2e−2ρτb

γ +






κe−ρv1 + λ if n = 1

κe−ρv2 + λ if n = 0
1
2q

otherwise




−1

ε = λ + 2α − κe−ρτa

β ε = λ + 2α − κe−ρτb

β

φ = 1 − e−ρτa

β + 2κe−2ρτa

γ φ = −e−ρτb

β + 2κe−2ρτb

γ +

{
e−ρτb

if n = 0, 1

1 otherwise
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II Cn,j = (Sn,j + z
2
)Xn,j + D

p
n,jXn,j + αn,jX

2
n,j + βn,jXn,jD

t
n,j + γn,j(D

t
n,j)

2

xn,j = 1
2
δn+1,j[εn+1,jXn,j − φn+1,jD

t
n,j]

αlast,d =






1
q1

if last = 0
1
q2

if last = N
1
2q

otherwise

, βlast,d = 1 αlast,d =






λ1 + κ1e
−ρv1

λ2 + κ2e
−ρv2

1
2q

, βlast,d =






e−ρv1 if last = 0

e−ρv2 if last = N

1 otherwise

α, β and γ as above

δ =
(
δ̃ − λa + α − κae−ρτa

β + (κa)2e−2ρτa

γ
)−1

δ =


α − κbe−ρτb

β + (κb)2e−2ρτb

γ +






κ1e
−ρv1 for n = 1

κ2e
−ρv2 for n = 0

1
2q

− λ otherwise




−1

ε = −λa + 2α − κae−ρτa

β ε = −λb + 2α − κbe−ρτb

β

φ = 1 − e−ρτa

β + 2κae−2ρτa

γ φ = −e−ρτb

β + 2κbe−2ρτb

γ +





e−ρv1 for n = 1

e−ρv2 for n = 0

1 otherwise

λa
n = λb

n =






λ1

λ2

λ

, κa
n = κb

n =






κ1

κ2

κ

, δ̃n =






1
q1

for n = 1
1
q2

for n = 0
1
2q

otherwise
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III Cn,j = (Sn,j + z
2
)Xn,j + D

p
n,jXn,j + αn,jX

2
n,j + βA

n,jXn,jD
A
n,j + βB

n,jXn,jD
B
n,j + γA

n,j(D
A
n,j)

2 + γB
n,j(D

B
n,j)

2 + γAB
n,j DA

n,jD
B
n,j

xn,j = 1
2
δn+1,j [εn+1,jXn,j − φA

n+1,jD
A
n,j − φB

n+1,jD
B
n,j]

IIIa αlast,d =





1
2q1

if last = 0
1

2q2
if last = N

1
2q

otherwise

, βA
last,d = 1

α = α′ − 1
4
δ′ε′2

From now on we do not state the case differentiation when it would only be a repeat of the last explicit one.

βA = 1
2
δ′ε′(φA)′ +





1
2
e−ρv2((βA)′ + (βB)′) if n=N-1

e−ρ(τa)′((βA)′ + (βB)′) if n=0,N

e−ρτ (βA)′ otherwise

βB = 1
2
δ′ε′(φB)′ +





1
2
e−ρv2((βA)′ + (βB)′)

0

e−ρτ (βB)′

γA = −1
4
δ′((φA)′)2 +






1
4
e−2ρv2((γA)′ + (γB)′ + (γAB)′)

e−2ρ(τa)′((γA)′ + (γB)′ + (γAB)′)

e−2ρτ (γA)′
γB = −1

4
δ′((φB)′)2 +






1
4
e−2ρv2((γA)′ + (γB)′ + (γAB)′)

0

e−2ρτ (γB)′

γAB = −1
2
δ′(φA)′(φB)′ +





1
2
e−2ρv2((γA)′ + (γB)′ + (γAB)′)

0

e−2ρτ (γAB)′

δ =





( 1
2q

− λ + α − 1
2
(κ − λ)e−ρv2(βA + βB) + 1

4
(κ − λ)2e−2ρv2(γA + γB + γAB))−1 for n = N

( δ̃
2
− λa + α − 1

2
(κa − λa)e−ρτa

(βA + βB) + 1
4
(κa − λa)2e−2ρτa

(γA + γB + γAB))−1 for n = 0, 1

( 1
2q

− λ + α + e−ρτ (−κβA + λβB) + e−2ρτ (κ2γA + λ2γB − κλγAB))−1 otherwise

ε =

{
2α − λa − 1

2
(κa − λa)e−ρτa

(βA + βB) if n=0,1,N

2α − λ + e−ρτ (−κβA + λβB) otherwise

φA =





1 − 1
2
e−ρv2(βA + βB) + 1

2
(κ − λ)e−2ρv2(γA + γB + γAB) if n=N

1 − e−ρτa

(βA + βB) + (κa − λa)e−2ρτa

(γA + γB + γAB) if n=0,1

1 − e−ρτβA + e−2ρτ (2κγA − λγAB) otherwise83
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φB =





−1
2
e−ρv2(βA + βB) + 1

2
(κ − λ)e−2ρv2(γA + γB + γAB)

0

−e−ρτβB + e−2ρτ (−2λγB + κγAB)
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IIIb αlast,d =





λ1 + 1
2
(κ1 − λ1)e

−ρv1

λ2 + 1
2
(κ2 − λ2)e

−ρv2

1
2q

, βA
last,d =





e−ρv1 if last = 0

e−ρv2 if last = N

1 otherwise

α = α′ − 1
4
δ′ε′2

βA = 1
2
δ′ε′(φA)′ +






1
2
e−ρτ ((βA)′ + (βB)′) if n=N-1

e−ρ(τb)′((βA)′ + (βB)′) if n=0,N

e−ρτ (βA)′ otherwise

βB = 1
2
δ′ε′(φB)′) +






1
2
e−ρτ ((βA)′ + (βB)′)

0

e−ρτ (βB)′

γA = −1
4
δ′((φA)′)2 +





1
4
e−2ρτ ((γA)′ + (γB)′ + (γAB)′)

e−2ρ(τb)′((γA)′ + (γB)′ + (γAB)′)

e−2ρτ (γA)′
γB = −1

4
δ′((φB)′)2 +





1
4
e−2ρτ ((γA)′ + (γB)′ + (γAB)′)

0

e−2ρτ (γB)′

γAB =






1
2
e−2ρτ ((γA)′ + (γB)′ + (γAB)′)

0

e−2ρτ (γAB)′
− 1

2
δ′(φA)′(φB)′

δ =





( 1
2q

− λ + α − 1
2
(κ − λ)e−ρτ (βA + βB) + 1

4
(κ − λ)2e−2ρτ (γA + γB + γAB))−1 for n = N

(α − 1
2
(κb − λb)e−ρτb

(βA + βB − 1) + 1
4
(κb − λb)2e−2ρτb

(γA + γB + γAB))−1 for n = 0, 1

( 1
2q

− λ + α + e−ρτ (−κβA + λβB) + e−2ρτ (κ2γA + λ2γB − κλγAB))−1 otherwise

ε =

{
2α − λb − 1

2
(κb − λb)e−ρτb

(βA + βB) if n=0,1,N

2α − λ + e−ρτ (−κβA + λβB) otherwise

φA =





1 − 1
2
e−ρτ (βA + βB) + 1

2
(κ − λ)e−2ρτ (γA + γB + γAB) if n=N

−e−ρτb

(βA + βB − 1) + (κb − λb)e−2ρτb

(γA + γB + γAB) if n=0,1

1 − e−ρτβA + e−2ρτ (2κγA − λγAB) otherwise

φB =





−1
2
(κ − λ)e−ρτ (βA + βB) + 1

2
(κ − λ)e−2ρτ (γA + γB + γAB)

0

−e−ρτβB + e−2ρτ (−2λγB + κγAB)85
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A.4 Existence of a Lagrange multiplier

In the sequel we translate Theorem 4, page 109 of [10] which guarantees the existence
of a Lagrange multiplier and we present it in the form as needed in Proposition 29. To
do so we start by stating what we mean by a local extremum.

Definition 38. (Local minimum) Let U ⊂ IRn be an open set and f : U → IR a
function. A point x ∈ U will be called a local minimum of f if there is a neighbourhood
V ⊂ U of x such that f(x) ≤ f(y) for all y ∈ V .

Theorem 39. (Lagrange multiplier)
Let U ⊂ IRn be an open set and Ξ ⊂ U an one-codimensional submanifold with

Ξ = {x ∈ U |l(x) = 0}

and l : U → IR continuously differentiable with

Rank

[
∂

∂(x1, ..., xn)
l(x)

]
= 1 for all x ∈ Ξ.

Furthermore assume that C̃0 : U → IR is a continuously differentiable function such
that C̃0 has a local minimum a in Ξ. Then there exists a constant ν ∈ IR such that

∇C̃0(a) = ν∇g(a).

Remark 40. In our case we have U = IRN+1 and l(x0, ..., xN) =
∑N

n=0 xn −X0. Then

Ξ =

{
(x0, ..., xN) ∈ IRN+1

∣∣∣∣∣

N∑

n=0

xn = X0

}

is an one-codimensional submanifold.
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Example g(x) limx→∞ g(x) −g′(x)x
3 exp(−x (1 − e−ρτ )) 0 ≤ e−1

4 e−ρτ x+10
x+10

e−ρτ ≤ 1
4
(1 − e−ρτ )

5 e−2ρτx2+10
x2+10

e−2ρτ ≤ 1
2
(1 − e−2ρτ )

Table 11: hD is one-to-one for Example 3 to 5.

A.5 Examples satisfy assumptions of Proposition 29 and 33

Let us start with Proposition 29 where hE has to be one-to-one. Corresponding to
Remark 32 and due to the positivity of the optimal strategy we have to show that the
function hE : IR+ → IR+ is one-to-one or increasing respectively for Examples 3, 4
and 5. For Example 3 we have

h′
E(u) =

e−ρτu + q − e−2ρτ (u + q)

(u + q) (e−ρτu + q)
,

which is obviously positive since all variables are positive. For Examples 4 and 5 we
consider the positivity of the function l from (66). In the case of Example 4 we get

l(u) =

√
q

5

[√
5q + e−ρτu − e−2ρτ

√
5q + u

]
> 0

and although l for Example 5 gets quite complicated, its positivity can be shown by
plotting it for different choices of q and ρ.

We now turn to Proposition 33. According to the last step of the proof of Proposition 33
we only have to check that the function hD : IR+ → IR+ where hD(0) = 0 is one-to-one.
In case of Example 0 and 2, hD is a straight line and a parabola, respectively. For the
remaining examples we write

hD(x) = x
1 − e−2ρτg(x)

1 − e−ρτg(x)
with g(x) :=

f(e−ρτx)

f(x)
and g(0) = 1.

Hence, hD is increasing and therefore one-to-one if

(1 − e−2ρτg(x))
(
1 − e−ρτg(x)

)
> −g′(x)xe−ρτ

(
1 − e−ρτ

)
. (79)

In case of Example 1 we get g(x) =
√

x+1
e−ρτ x+1

, which is increasing and satisfies (79).

For the Examples 3 to 5 we use that g as stated in Table 11 is decreasing and therefore
we get (79) for x ≥ 0 if

eρτ − e−ρτ > −g′(x)x. (80)

According to Table 11, (80) is satisfied for Example 4 and 5. In case of Example 3,
inequality (80) holds if ρτ > 0.2 which is true for reasonable choices of ρ and τ .
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